
PolyTOIL: A Type-Safe Polymorphic
Object-Oriented Language

KIM B. BRUCE, ANGELA SCHUETT and ROBERT VAN GENT
Williams College
and
ADRIAN FIECH
Memorial University of Newfoundland

PolyTOIL is a new statically typed polymorphic object-oriented programming language that is
provably typesafe. By separating the definitions of subtyping and inheritance, providing a name
for the type of self, and carefully defining the type-checking rules, we have obtained a language
that is very expressive while supporting modular type-checking of classes. The matching relation on
types, which is related to F-bounded quantification, is used both in stating type-checking rules and
expressing the bounds on type parameters for polymorphism. The design of PolyTOIL is based on
a careful formal definition of type-checking rules and semantics. A proof of type safety is obtained
with the aid of a subject reduction theorem.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—classes and objects, constraints, inheritance, polymorphism; D.3.1 [Programming
Languages]: Formal Definitions and Theory—semantics; D.3.2 [Programming Languages]:
Language Classifications—objecct-oriented languages; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—operational semantics; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs—object-oriented constructs

General Terms: Design, Language, Theory

Additional Key Words and Phrases: Matching, hash type

1. INTRODUCTION

Because of the complexity of object-oriented languages, it has proven to be very
difficult to design type-safe statically typed object-oriented languages that are
also very expressive. At one extreme we have statically typed languages like

The research of K. B. Bruce, A. Schuett, and R. van Gent was partially supported by NSF grants
CCR-9121778, CCR-9424123, and CCR-9870253. A Fiech’s research was partially supported by
NSERC grant OGP0170497. The results in this article are based in part on the Williams College
senior honors theses of van Gent and Schuett. An extended abstract of this article appeared in the
proceedings of ECOOP ’95.
Author’s addresses: K. B. Bruce, Department of Computer Science, Williams College, Williamstown,
MA 01267; email: kim@cs.williams.edu, A. Schuett, Department of Electrical Engineering and
Computer Science, University of California at Berkeley; R. van Gent, Extempo Systems, Inc.;
A. Fiech, Memorial University of Newfoundland.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
C© 2003 ACM 0164-0925/03/0300-0225 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003, Pages 225–290.

226 • K. B. Bruce et al.

C++ [Ellis and Stroustrop 1990], Java [Arnold and Gosling 1996], and Object
Pascal [Tesler 1985], which come close to type safety, but whose rigid and in-
flexible type systems result in the need for type casts in order to express the
programmer’s desires. At the other extreme are untyped or weakly typed lan-
guages like Smalltalk [Goldberg and Robson 1983], which are prone to runtime
errors of the form “message not understood.” Somewhere between these ex-
tremes are languages like Beta [Madsen et al. 1990] and Eiffel [Meyer 1992],
which require either runtime checks or more elaborate linktime checks to pick
up errors that cannot be detected reliably by a static type-checker.

The language PolyTOIL is the result of a series of design efforts to build a
type-safe language based on progress in the theoretical understanding of object-
oriented languages (see Cardelli [1988], Cardelli and Wegner [1985], Cook et al.
[1990], Canning et al. [1989], Pierce and Turner [1993], and Abadi and Cardelli
[1994 a, b, 1995], for example, for work on modeling object-oriented features).
In Bruce [1993], we introduced a statically typed, functional, object-oriented
language, TOOPLE. This and subsequent papers [Bruce 1994; Bruce et al. 1994,
1993] provided typing rules and both denotational and operational semantics
for the language. These papers included proofs of the relative consistency of
the operational and denotational semantics, a subject-reduction theorem, the
type safety of the type-checking rules, and the decidability of the type-checking
problem.

Because most object-oriented programming languages are imperative, it was
clearly desirable to extend this work to create an imperative object-oriented
language. The transitional language TOIL [Bruce and van Gent 1993; van Gent
1993] was designed to satisfy this goal while retaining the same nice features as
TOOPLE. The extension of TOIL to PolyTOIL is obtained by adding an unusual
form of bounded polymorphism that provides a very flexible yet safe language
for object-oriented programming. In this article we report on the design, type-
checking rules, and semantics of PolyTOIL.

A minimal list of features that should be supported in any object-oriented
programming language includes:

—Objects, consisting of both state, represented by instance variables, and
operations, represented by methods;

—Classes, to generate objects (although delegation would be a reasonable al-
ternative);

—Message sending, as a way of specifying computation;
—Subclasses, to support reuse of the instance variables and methods of an

existing class in defining a new class;
—Subtypes, depending only on object interfaces, to provide a mechanism for

programmers to use an object of one type in a context that expects one of a
different but related type; and

—Keywords, self and super, representing the receiver of a message and the
set of methods from its superclass, respectively.

Other desirable features supporting reuse include:

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 227

—Information hiding, ensuring that applications do not depend on the im-
plementation details of objects;

—Parameterized types and (bounded) polymorphic classes and meth-
ods, allowing a programmer to abstract over a type in order to define a related
family of types or operations; and

—Modular type-checking, providing greater support for the reuse of class
definitions by allowing subclasses to be type-checked with knowledge only
of the type of the superclass, rather than its code. This provides support for
separately compiled classes and eliminates the necessity of repeatedly type-
checking methods when they are inherited from superclasses.

The language PolyTOIL satisfies all of these requirements and is provably type
safe. We list below several other important features of PolyTOIL.

PolyTOIL treats classes as first-class values, allowing them to be values of
variables, to be passed as parameters, and to be returned as values of func-
tions. As we show below, this simplifies many of the problems with initializing
objects and provides greater flexibility in support of such things as parameter-
ized subclasses. We also provide more flexibility in the definition of subclasses
by allowing the programmer to change the types of overridden methods to be
subtypes of the corresponding types in the superclass.

PolyTOIL supports a new keyword, MyType, which represents the type of
self. The use of this keyword allows more accurate typing of methods that
have parameters or return values whose type is desired to be the same as self.
An interesting feature of the use of MyType is that subclasses of classes whose
method types involve MyType need not always give rise to subtypes. Although
we could, like Trellis/Owl [Schaffert et al. 1986], restrict legal subclasses to
those that generate subtypes, we find it more useful to separate the subclass
and subtype hierarchies in PolyTOIL.

Separating these hierarchies in PolyTOIL allows greater expressiveness
while providing type safety. We introduce a new relation on types called match-
ing that corresponds more closely than subtyping to the subclass hierarchy in
the presence of MyType. This relation, which is more general than subtyping
on object types, is very useful both in expressing the type-checking rules for
classes and in determining when messages can be sent to objects.

The major difference between our earlier language, TOIL (for Typed Object-
oriented Imperative Language) and PolyTOIL is the support for polymorphic
functions. We express constraints on type parameters by requiring that a type
match a given object type. As we show in the next section, constraining types
using matching is much more useful than using the subtype relation.

We have a number of results on the type system and semantics of PolyTOIL,
however, in this article we focus on type safety. We include and explain the
type-checking rules as well as a natural (operational) semantics. The natural
semantics is environment-based and corresponds closely to an interpreter that
we have implemented for the language. We prove a subject-reduction theorem,
from which follows the type safety of the system. One consequence is that the
computation of a well-typed term will never result in sending a message to an
object that it will not understand. The proof of subject reduction is interesting

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

228 • K. B. Bruce et al.

in that it applies to an environment-based natural semantics for a polymorphic
language.

In Section 2 of this article we discuss the design of PolyTOIL. We include an
extended example that illustrates the flexibility of the language. In Section 3 we
provide the formal syntax and type-checking rules for PolyTOIL. In Sections
4 and 5 we provide the natural semantics and present the subject-reduction
and type-safety theorems. In Section 6 we compare our development of Poly-
TOIL with other similar work on statically typed imperative object-oriented
programming languages. In the final section we discuss more recent work on
PolyTOIL and its successors.

2. LANGUAGE DESIGN FOR TYPE SAFETY

We presume that the reader is familiar with the basic notions of object-oriented
languages, including object, class, subclass, method, and instance variable. A
simple example of a PolyTOIL program is given in Figure 1.1 In the following
subsections we describe the more innovative features of PolyTOIL by referenc-
ing this and other examples.

2.1 Classes Are Not Types

Types in programming languages provide interfaces that can be used to deter-
mine whether certain operations or constructs are legal. They typically do not
include semantic information. Classes in object-oriented languages include the
bodies for methods as well as initial values for instance variables. Since this
is semantic information, we conclude that it is more appropriate to think of
classes as values than as types.

Java [Arnold and Gosling 1996] allows programmers to define interfaces as
well as classes, and several classes may implement the same interface. Both
classes and interfaces may be used as types in Java. We go further in PolyTOIL
by completely separating classes from object types. Classes may not be used as
types. Instead classes are “first class” values in PolyTOIL. They may be used
as parameters in functions and may be returned from functions.

The program in Figure 1 defines a class HelloClass with instance variable
happy of type boolean, and methods setMood and printMood. All instance vari-
ables are accessible only within the class and its subclasses. This is similar to
C++ and Java’s protected feature, with the exception that a method can ac-
cess only variables of the receiver. (In Java a method can access the private
variables of other accessible objects of the same class.) Methods are always ac-
cessible outside of the class (like Java’s public methods).2 As usual the class
includes the method bodies and initial values for instance variables.

The type HelloType is the type of objects generated from HelloClass. The
types of objects begin with the keyword ObjectType and include only method

1We have changed some features of the syntax of the language in inessential ways to obtain a
more compact representation of code for the purposes of this article. The type A → B represents a
function type with domain A and range B. If the range type is void then it is the type of a procedure.
2The implemented PolyTOIL language includes facilities to restrict the visibility of methods. We
have omitted these here to reduce the complexity of our semantics.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 229

Fig. 1. A simple class and types in PolyTOIL.

signatures. Thus HelloType includes the names and signatures of both setMood
and printMood.

In contrast, the type HelloClassType is the type of the class HelloClass. The
types of classes begin with the keyword ClassType, and include the signatures of
all methods and instance variables in the class, but no initial values or method
bodies. This more complete information is necessary because we might write a
function that takes a class parameter and creates a subclass. Because instance
variables and all methods from the superclass are available in the subclass, it
is important that the type of the class include all of that information (although
note that it is not important that the bodies of the methods be known at compile
time—only their signatures).

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

230 • K. B. Bruce et al.

Thus classes in PolyTOIL are typically associated with two types: a
ClassType that describes the class itself, and an ObjectType that describes
the objects generated by the class. Because these types are only interfaces, dis-
tinct classes may have the same associated object and class types (the latter,
however, would require the classes to be remarkably similar).

Just as we distinguish classes from types, we can also distinguish subclasses
from subtypes. A type σ is a subtype of type τ , written σ <: τ , if a value of
type σ can be used in any context expecting a value of type τ . In most popular
object-oriented languages (e.g., C++, Java, Object Pascal, and Eiffel), subtypes
may only arise from the creation of subclasses, but there is no need for this
restriction. As described in Cook et al. [1990], it is possible to have subclasses
that do not generate subtypes, and subtypes that do not arise from subclasses.

Thus if one is interested in designing a statically typed object-oriented lan-
guage, type safety will require either restricting subclasses to be those that
generate subtypes (as was done in Trellis/Owl [Schaffert et al. 1986]) or sep-
arating the subclass and subtype hierarchies. In the interest of maximizing
expressiveness we have chosen to separate these hierarchies.

In Java, classes C and D may implement interfaces (object types) IC and ID
where IC extends ID, but C does not extend D. In our terminology, object type
IC could be a subtype of ID, but class C is not a subclass of D. However, it is not
possible in Java to have a class C extend class D without the first being able to
be used as a subtype of the second. (If D implements interface ID, and C extends
D, then C automatically also implements interface ID.)

In the next subsection we see how the introduction of a new type expression
standing for the type of self can result in subclasses that do not give rise to
subtypes.

2.2 Self and MyType

Virtually all object-oriented languages include a construct self (sometimes
named this or Current) that can be used either explicitly or implicitly within a
method to refer to the object executing the method. In order to statically type-
check a method in which self occurs, we must be able to determine its type.
This is harder than it might appear at first sight.

Let C be a class and COType be the type of objects generated by C. If self
occurs in method m in class C, one might expect to assign self the type COType.
However, the method m might also be inherited in a subclass D of C. In this
new context, self represents an object generated from D, which likely has a
different type. If we wish to be able to type-check the method m only the first
time it appears, and not repeatedly type-check it every time it is inherited, we
must do the type-checking under assumptions on the type of self that will also
hold in every subclass.

To do this, we must first know what changes are allowed in the types of
methods in subclasses. As explained in Bruce [1994], to preserve type safety
the body of a method m with type τm in a class C may only be overridden in a
subclass D with a new method as long as the type τ ′m of the replacement method
is a subtype of τm.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 231

This motivates the definition of the matching relation <# between object
types. ObjectType τ ′ <# ObjectType τ if and only if for every method name
m in τ there is a corresponding method name m in τ ′, and the type of m in τ ′ is
a subtype of its type in τ . To preserve type safety, we restrict the definition of
subclass so that when D is a subclass of C, the corresponding object types (i.e.,
types of objects generated by the two classes) will match. (An example of two
types that match, but are not subtypes, is given later in this section. Formal
definitions of matching and subtyping are postponed to the next section.)

In order to accomodate the possible changes to the type of self in sub-
classes, and to increase the expressiveness of the language, we introduce the
special type, MyType, to represent the external type of self (where instance
variables are hidden). In order to ensure that methods remain type safe when
inherited in subclasses, methods are type-checked under the assumption that
MyType <# ObjectType τ . Thus any object of type MyType will be guaranteed to
have all of the methods occurring in ObjectType τ , and the types of the methods
will be guaranteed to be subtypes of those given in τ . By type-checking under
this assumption, we need not worry about the type safety of the method when
it is inherited in subclasses. It is safe because the types of objects generated
from subclasses will be guaranteed to match ObjectType τ .

Figure 2 contains a simple example of the use of MyType in the definition
of a class that generates objects that can be used as the nodes of linked lists.
NodeClass is defined as a function that takes a parameter of type NumType,
returning a class that uses the parameter as the initial value of the val field
(the next field is initially nil, a keyword with semantics similar to Java and
C++’s null). It is convenient to think of NodeClass simply as a parameterized
class, even though technically it is a function that returns a class.

In the definition of NodeClass, the type of instance variable next is given
as MyType. Because getNext and setNext return the value of next and update
the value of next, their return type and parameter type, respectively, have type
MyType.

As mentioned earlier, the type of a class begins with the keyword ClassType.
NodeClassType, the return type of NodeClass, contains the types for all of the in-
stance variables and methods of the class. Types of objects begin with the key-
word ObjectType. NodeClasswill generate objects of type NodeType, as the meth-
ods and their types in NodeClassType and NodeType are the same. In particular,
the method types of NodeType also involve MyType.

Although the formal type-checking rules are given in the next section,
we provide some intuition here. Let nd be an object of type NodeType. Be-
cause MyType stands for the type of self (the object executing the method),
nd.getNext() returns an object of type NodeType, the type of the receiver. Sim-
ilarly, nd.setNext(otherNd) is well typed only if otherNd has type NodeType.
Intuitively, if you send a message to an object with static type T, then the type
of the message send is obtained from the type of the method by replacing all
occurrences of MyType by T.

So far the typing works exactly as if all occurrences of MyType in NodeClass
and NodeType were replaced by NodeType. The difference arises in the definition
of subclasses.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

232 • K. B. Bruce et al.

Fig. 2. Node class with MyType.

Figure 3 contains the definition of a class that generates doubly linked nodes.
It is defined as a subclass of NodeClass formed by adding the new instance
variable prev and methods getPrev and setPrev. As declared in the header, it
also overrides the inherited method setNext.

Both the inherited instance variable next and the new instance variable
prev have type MyType. Similarly, the inherited methods and new methods have

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 233

Fig. 3. DNode subclass with MyType.

types involving MyType. In the context of class NodeClass, MyType suggests type
NodeType; in DNodeClass it suggests type DNodeType. This is very similar to the
change of meaning of self depending on context. Because the interpretation
of MyType changes automatically from NodeType to DNodeType, the inherited
instance variables and methods are consistent with the new ones in DNodeClass.

If one were to attempt defining DNodeClass as a subclass of NodeClass in a lan-
guage without MyType, severe problems would arise. If all occurrences of MyType
in NodeClass were replaced by NodeType, and those in DNodeClass were re-
placed by DNodeType, then the inherited methods and instance variables would
be inconsistent with the new ones. Thus, in DNodeClass, the instance variable
next would have type NodeType, but the instance variable prev would have type
DNodeType. These and other similar inconsistencies in method signatures would
result in problems. Suppose dn were a variable of type DNodeType. If dn were

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

234 • K. B. Bruce et al.

a doubly linked node in a list, one would expect dn.getNext().getPrev() to
return dn. However, with the class definitions described above without MyType,
this expression is not even well typed, as the result of dn.getNext() has static
type NodeType rather than DNodeType.

Most statically typed object-oriented programming languages (including
Java, C++, and Object Pascal) do not include a keyword such as MyType to
express the type of self, and instead are forced to assume its type is the same
as the objects being defined by the class. To preserve type safety, the language
designer must require the types of subclasses to be subtypes of the type of the
superclass. As a result it becomes impossible to properly redefine methods such
as setNext that take parameters whose type should correspond to that of the
receiver (self).

Trellis/Owl [Schaffert et al. 1986] was one of the first languages to include a
MyType construct. Because of concerns with the failure of subtyping, Trellis/Owl
required that all subclasses also generate subtypes. This requirement essen-
tially restricted uses of MyType to the return types of methods. Occurrences of
MyType as the type of parameters of methods would not result in subtypes.

Eiffel [Meyer 1992] also includes a construct similar to MyType (written like
Current in Eiffel). Eiffel rejected the restrictions imposed by Trellis/Owl and
allowed the use of like Current as the type of parameters of methods and as
the type of instance variables. Unfortunately, the free use of this construct and
the identification of subclasses with subtypes leads to type insecurities [Cook
1989]. We illustrate this problem with an example.

As is clear when we give the formal definition of matching, in our example
above, DNodeType <# NodeType, but we claim it is not a subtype. Suppose we
write the following PolyTOIL procedure,

breakIt = procedure(sn1, sn2: NodeType)
{ sn1.setNext(sn2) }

If we were to adopt the Eiffel rules that assume subclasses generate subtypes,
we would treat DNodeType as a subtype of NodeType. Thus we would allow
the call of breakIt(dnode, lnode) if dnode is an object generated from class
DNodeClass (and hence of type DNodeType) and lnode an object generated from
class NodeClass (and hence of type NodeType).

However, the execution of this call would result in the execution of the
setNext code from DNodeClass. As the reader can easily check, the setNext
code includes sending the setPrev message to its parameter, which in this case
is of type NodeType. Because elements of type NodeType need not have a method
named setPrev, the program will crash. The difficulty is that at runtime the
receiver of the message setNext is of type DNodeType, and hence expects a pa-
rameter of the same type. Unfortunately, what it finds is a parameter of a
different type, NodeType.

PolyTOIL only allows the user to deduce that DNodeType<# NodeType, there-
fore it would not allow the use of actual parameter dnode of type DNodeType for
formal parameter sn1 with declared type NodeType.

Because Eiffel would allow DNodeType to be treated as a subtype of NodeType,
its static type system is not safe. Eiffel designer Bertrand Meyer originally

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 235

proposed [Meyer 1992] a linktime “system validity check” for Eiffel to compen-
sate for the failures of the static type system to catch errors. More recently he
has proposed a different restriction of the language that would ban “polymor-
phic CAT-calls” [Meyer 1995]. Neither appears to have been implemented in a
publicly available Eiffel compiler, probably because of the loss of expressiveness
that would result.

We avoid these problems in PolyTOIL while preserving much of the expres-
siveness of Eiffel by separating the class and subtype hierarchies, providing
more careful type-checking rules, and providing support for bounded polymor-
phism using matching. The result is a language that is provably safe, while be-
ing significantly more flexible than statically typed object-oriented languages
such as C++, Java, and Object Pascal.

2.3 PolyTOIL Is Imperative

According to the definition of subtyping, it should be possible to assign to a
variable an expression whose type is a subtype of that of the variable. That
is, if T <: U, eT is an expression of type T, and xU is a variable of type U, one
would like to allow the assignment xU := eT .

A variable of object type either contains a reference to the instance variables
and methods of an object or contains a nil reference, which is denoted by the
constant nil. Nil is considered an element of each object type, including MyType.
As is common in object-oriented languages, sending a message to nil will result
in a runtime error, which is not considered to be a type error. That is, this error
is treated in the same way as dividing by 0, an error that the programmer
is required to check for and handle, and that cannot be detected by the type
system.3

If x is a variable holding values of type τ , the type-checker treats x as hav-
ing type ref τ . Because these reference types are both receivers and produc-
ers of values, they have no nontrivial subtypes (see Reynolds [1980]). Similar
problems obstruct the use of subtyping with call-by-reference parameters. For
instance, a procedure might take a formal parameter of type U and assign to it
a new object of that type. If an actual parameter x of type T <: U is passed in
to the procedure as a call-by-reference parameter, it will be assigned a value
of type U. This would create a hole in the type system that would show up if a
message m belonging to T but not U were sent to x after the procedure returns.

For example, let

breakIt2 = procedure(a: ref U, b: U)
{ a := b }

where the notation a : ref U indicates that a is called by reference. Let T be a
subtype of U, x be a variable of type T, and exp be an expression of type U. Then
breakIt2(x,exp) would result in the type error of assigning a value of type U
to a variable of type T, a subtype.

3Of course is is possible to define type systems that rule out both of these errors, but they tend to
be very awkward in practice. We chose to include nil as a keyword with this behavior because we
wish to explain languages with features and programming styles similar to those in current use.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

236 • K. B. Bruce et al.

To avoid adding special rules to restrict subtyping in such cases, PolyTOIL
only supports “call-by-sharing” parameters. This parameter-passing technique
is similar to “call-by-constant-value” in that it is illegal to assign to a formal
parameter in a procedure or function. Of course, it is legal to send a message
to such a parameter, requesting it to perform an action (which may result in a
change to that object’s instance variables). As a result, this mechanism, similar
to that used in Eiffel and Java, is more flexible than it might first appear.

2.4 Parameterized Types and Match-Bounded Polymorphism

PolyTOIL supports the definition of parameterized types (functions from types
to types) and polymorphic functions (functions from types to values). To provide
finer control over the types that may be passed in as parameters, the language
allows programmers to constrain a type parameter to match a given object type.

We illustrate the expressiveness of PolyTOIL by extending our earlier ex-
ample of singly and doubly linked nodes with a class that can construct either
singly or doubly linked ordered lists from these nodes. The PolyTOIL type and
class definitions can be found in Figure 4. Code using these definitions is given
in Figure 5.

OrdListType and OrdListClassType in Figure 4 are functions that take a
type U and return an object and class type, respectively. OrdListClass is a func-
tion that takes a type U matching NodeType, and returns a class with type
OrdListClassType[U]. Thus OrdListType and OrdListClassType are parame-
terized types, and OrdListClass is a parameterized class.

In the case of OrdListClass, the type parameter is match-bounded by
NodeType. Thus it can be instantiated by NodeType or by DNodeType, since both
match NodeType. As illustrated in Figure 5, OrdListType[NodeType] is the type
of ordered singly linked lists, whereas OrdListType[DNodeType] is the type of
ordered doubly linked lists. Also, evaluation of new OrdListClass(NodeType)
results in the creation of a new singly linked list, whereas evaluation of new
OrdListClass(DNodeType) results in the creation of a new doubly linked list.
The type-checking rules will make it impossible to add a doubly linked node to
a singly linked list or vice versa.

The match constraint on type variable U guarantees that values of type
U (e.g., the local variable current in method find) can be sent messages
getNext, setNext, getVal, and setVal. Thus if current has type U, then
current.getNext() will return a value of type U. Similary, if newNode has type
U then newNode.setNext(head) is well typed only if head also has type U. As
this example shows, it is often more important to know what messages can be
safely sent to an object than to know whether it is a subtype of some other type.
Thus we choose to support a form of bounded polymorphism where the bound
is expressed in terms of matching, which provides exactly this information.

Match-bounded polymorphism is similar to F-bounded polymorphism
[Canning et al. 1989] in expressiveness, but is somewhat more expressive and
meshes more smoothly with subclasses (see Abadi and Cardelli [1996]).

A further example of the usefulness of matching is obtained by noting that
the sample program can be further parameterized to make it more flexible.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 237

Fig. 4. Example of match-bounded polymorphism in PolyTOIL. Part i.

Define

Comparable = ObjectType {ge:MyType -> bool;
eq:MyType -> bool}

Note that NumType <# Comparable, although again it will not be a subtype.
Now we can modify each of NodeClass, DNodeClass, and OrdListClass to take
a second type parameter T <# Comparable. All occurrences of NumType within
the bodies of the associated methods can now be changed to T. The result is a
collection of classes that can be used to generate either singly or doubly linked
lists with elements of any type supporting appropriate ge and eq methods.

Having provided this overview of PolyTOIL, we proceed in the next section
to give a formal definition of PolyTOIL and its type-checking rules. In Section 4

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

238 • K. B. Bruce et al.

Fig. 5. Example of the use of match-bounded polymorphism in PolyTOIL. Part ii.

we specify its semantics in preparation for showing that the language is type
safe.

3. A FORMAL DEFINITION OF POLYTOIL SYNTAX

In this section we present the formal definitions of types and terms, and pro-
vide type-checking rules for PolyTOIL. The language is presented here with an
abstract syntax that differs in inessential ways from that used in the earlier
examples. In particular, we replace ClassType(τ1, τ2) by ClassType(mt, τ1, τ2),
and ObjectType τ by ObjectType(mt, τ). The bound type variable mt in these
two type expressions stands for the MyType of the class or object type. Explicit
provision of this type name makes it somewhat simpler to handle nested types.
Since nesting occurs only infrequently in practice, the concrete syntax of the
language always assumes that the type variable is MyType. For simplicity in the
exposition below, we usually use MyType for this bound type variable.

3.1 Kinds and Types in PolyTOIL

Types include the object and class types discussed earlier, but also include
other types that are useful in expressing type-checking rules and semantics of
the language. Kinds are used to classify types and higher-order functions from
types to types.

The kinds of the language describe collections of type constructors (types
and functions that may result in types). The constant TYPE denotes the col-
lection of all types of PolyTOIL. The constant RECTYPE denotes the collection
of record types (which are not types of the concrete syntax). The higher-order
kinds denote collections of functions from types to type constructors.

K : := TYPE | RECTYPE | TYPE⇒ K .

The preconstructors represent elements of the various kinds. They are types,
record types, or higher-order functions with types as parameters, or applications

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 239

of these functions to types.

κ : := τ | γ | TFunc[t]κ | κ[τ],

where τ is a pretype expression, t is a type variable, and γ is a record pretype
expression, defined below.

Once we define pretype and record pretype expressions, we provide kinding
rules for determining which of the preconstructors can be assigned a kind. The
constructors are those preconstructors that can be assigned a kind.

We next define the pretypes of PolyTOIL. The types of the language are those
pretypes that can be assigned a kind by the kinding rules.

Definition 3.1. Let V be an infinite collection of type variables, L be an in-
finite collection of labels, and C be a collection of type constants that includes
at least the type constants Bool, Num, PROGRAM, COMMAND, Void, Null, and Ob-
ject. The simple pretype expressions, PreType, and record pretype expressions,
PreRecType, of PolyTOIL with respect to V, L, and C are given by the following
context-free grammar. We assume t ∈ V, c ∈ C, and mi ∈ L in the following.

τ ∈ PreType : := t | c | ref τ | τ1 → τ2 | ∀t.τ | ∀t<# τ1.τ2 | ∀t <: τ1.τ2 |
ClassType(t, γ1, γ2) | ObjectType(t, γ)

γ ∈ PreRecType : := {m1: τ1; . . . ; mn: τn}.

In the following text we use the metavariables τ, σ, δ, α, β, γ , ξ , with and
without subscripts to describe type expressions. The set of free variables of a
type τ , written FV(τ), is defined as usual. The type variable t is not free in ∀t.τ ,
∀t<# τ1.τ2, ∀t <: τ1.τ2, ClassType(t, γ1, γ2), or ObjectType(t, γ).

We let the type constant PROGRAM stand for the type of an entire program,
and COMMAND stand for the type of an imperative command expression. The type
Void is used when typing parameterless functions. We also encode procedures
from the concrete syntax as functions that return the value command of type
COMMAND (which behaves as a null command). Thus the type of parameterless
procedures is given as Void→ COMMAND.

The type Null is a subtype of all object types. It contains the element nil that
is used in our sample program. The type Object is a supertype of all object types,
and (in our current implementation) contains built-in clone and deepClone
methods that are (implicitly) inherited by all object types.

Reference types are the types of variables. That is, if x is a variable holding
values of type τ , then x has type ref τ . This notation allows us to distinguish
between values of type τ and variables that hold values of that type.

As is standard, the type τ1 → τ2 is the type of functions taking a param-
eter of type τ1 and returning a value of type τ2. The types ∀ t.τ , ∀ t<# τ1.τ2,
and ∀ t <: τ1.τ2 represent unbounded and bounded polymorphic functions (i.e.,
functions that take types as parameters). The identifier t is bound by these
type expressions. Although only match-bounded polymorphism is supported by
the concrete syntax, we find it convenient to include subtype-bounded poly-
morphism to express the semantics of partially evaluated programs. As usual
we identify polymorphic types that are the same up to renaming of the bound
variable.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

240 • K. B. Bruce et al.

Records were not part of the concrete syntax discussed in the previous sec-
tion, but it is convenient to have them in the abstract syntax as a way of building
up object and class types. Thus the definition of record pretypes is given in the
definition of PreRecType. The order of fields in records is irrelevant, so record
types that are identical up to the order of fields is identified. We often abbreviate
records and their types with notation such as {mi = ai: τi}i≤n and {mi: τi}i≤n.

The external view of an object generated from a class with type ClassType
(MyType, γi, γm) is represented by the type ObjectType(MyType, γm), which does
not expose the instance variables. In this notation, MyType is the type variable
representing the type of self. (That is, in the abstract syntax, MyType is not
a keyword, but is represented by whatever type variable appears as the first
component of each class and object type.)

The definition of NodeType from Figure 2 would be written in the abstract
syntax as follows.

NodeType = ObjectType(MyType,
{getNext: Void -> MyType;

setNext: MyType -> Command;
getVal: Void -> NumType;
setVal: NumType -> Command})

Because programs in the implemented language may not mention ref,
record, or ∀t <: τ1.τ2 types, or the type constants PROGRAM, COMMAND, Object,
or Null, these types do not complicate the language seen by programmers.
However, they are useful in writing the type-checking rules for the language.

The axioms and rules for determining valid types and constructors are given
with respect to a set, C, of simple type constraints, which provide information
about free type variables. The definition of type constraints, the rules for de-
termining valid types and constructors, and the matching and subtyping rules
are mutually recursive.

Definition 3.2. Relations of the form t: TYPE, t <: τ , and t <# τ , where t is a
type variable and τ is a type expression, are said to be simple type constraints.
A type constraint system C is defined as follows.

1. The empty set ∅ is a type constraint system.
2. If C is a type constraint system and t is a type variable that does not appear

in C, then C ∪ {t: TYPE} is a type constraint system.
3. If C is a type constraint system such that C ` τ : TYPE, and t is a type variable

that does not appear in C or τ , then C ∪ {t <: τ } is a type constraint system.
4. If C is a type constraint system such that C ` τ <# Object, and t is a type

variable that does not appear in C or τ , then C∪{t <# τ } is a type constraint
system.

The restriction that C ` τ <# Object in the last clause ensures that τ will be
an object type.

In Figures 6 and 7 we include axioms and rules for determining which are
the legal type and constructor expressions. In the ObjectType and ClassType
rules, the types of all methods must be function or polymorphic function types.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 241

Fig. 6. Type and constructor rules.

The axioms and rules for <: , which are similar to those for our earlier
language TOOPLE, can be found in Figure 8. Neither class nor reference types
have nontrivial subtypes. The subtyping rule for function types is contravariant
in the argument type and covariant in the result type [Cardelli 1988]. The
subtyping rules for polymorphic types support covariant changes in the return
type, but no changes in the bounds of the type parameters. Although the rules
could be generalized to allow contravariant changes in the type bounds, the
decidability of subtyping would be lost [Pierce 1994]. The subtyping rule for
record types allows both depth and width subtyping.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

242 • K. B. Bruce et al.

Fig. 7. Type and constructor rules (cont.).

Fig. 8. Subtyping rules.

Because object types can be understood as recursive types in which MyType
refers to the entire type, the subtyping rule for object types is similar to that for
determining subtypes of recursive types given in Amadio and Cardelli [1993].
It is more difficult to satisfy than the corresponding matching rule for objects.
In particular, if an object type has a method with parameter of type MyType,
then it cannot have any nontrivial subtypes. This intuitively follows from the
fact that the parameter type described by MyType would change covariantly in
a subtype, and that violates subtyping for function types. This problem was
illustrated in the last section by the breakIt procedure.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 243

Fig. 9. Matching rules.

It is convenient to have the type Null as a subtype of every object type. Null
is a type whose only element is nil. The element nil represents an uninitial-
ized object. We make Null a subtype of all object types in order to have nil
be an element of every object type. Alternatively we could have altered the
type-checking rules given later so that nil would be given every object type.
See Bruce [2002] for a further discussion of how to handle nil in the formal
description of object-oriented languages.

Applications of TFunc terms in type expressions are evaluated before type-
checking by explicitly substituting actual parameters for formal parameters in
the bodies of the type functions. The substitution is performed to aid in type-
checking. We do not include subtyping rules for higher-order constructors (e.g.,
C ` F <: G if and only if C∪{t: TYPE} ` F (t) <: G(t)). These rules would not be
difficult to include, but are omitted from the language for simplicity. Because we
evaluate TFunc applications before type-checking, they are also less important
than they might otherwise be.

It is straightforward to show the following lemma.

LEMMA 3.3. Let C ` σ <: τ . Then C ` σ : TYPE and C ` τ : TYPE.

PROOF. Simple induction.
The matching relation is defined in Figure 9. Notice that it is defined only on

object types. All but the last matching rule are relatively trivial. The last rule,
ObjType<#, looks complex, but its import is relatively straightforward. Most
of the complications in the hypotheses result from the necessity of using the
same type variable to stand for MyType. It states that matching types can arise
by either “width” or “depth” subtyping of the record of methods. That is, one
may either add new types, or replace existing types by subtypes of the originals.
Because the MyTypes on both sides are replaced by the same variable, they are

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

244 • K. B. Bruce et al.

treated as being equal for the purposes of determining whether two object types
match. Notice that all we are allowed to assume about the MyTypes is that they
match the smaller of the two object types in the comparison.

It is again easy to show the following.

LEMMA 3.4. Let C ` σ <# τ . Then C ` σ : TYPE and C ` τ : TYPE.

PROOF. Simple induction.

3.2 PolyTOIL Expression Syntax

In the examples presented earlier, we used a concrete syntax that is under-
stood by our interpreter. Here we use a desugared abstract syntax that is
closer to the way expressions are held internally. An important advantage of the
desugared syntax is that it makes the proof of the type safety of the language
easier.

As an example of the changes in the abstract syntax, the key words var and
methods separating instance variable and method definitions are dropped in
favor of a pair of record expressions, and val must be applied to a variable
to obtain its value. As mentioned earlier, procedures are modeled by functions
that return the value command of type COMMAND. All functions and procedures are
written in curried form for simplicity in the exposition.

The formal syntax of programs, declarations, blocks, expressions, and com-
mands of the language are given as follows.

Definition 3.5. The set PreTerm of preterms of PolyTOIL over a set B of
term constants, a set L of labels, and a set X of term identifiers is given by
the following context-free grammar (we assume x ∈ X , b ∈ B, l , m ∈ L,
and σ, τ ∈ PreType).

Prog : := Program x; Block.
Block : := CDcls VDcls begin S return M end
CDcls : := const CDclLst | ε
CDclLst : := x = M | x = M ; CDclLst
VDcls : := var VDclLst| ε
VDclLst : := x: τ | x: τ ; VDclLst
M : := x | b | val M | function(x: τ) Block | function(t: TYPE) Block |

function(t<# τ) Block | function(t <: σ) Block | M (M ′) | M [τ] |
{l1 = M1: τ1; . . . ; ln = Mn: τn} | M .li | class(M1, M2) | new M |
M ⇐ mi | class inherit M modifying l , m ({li = Mi: σi}i≤n,
{m j = M j : τ j } j≤m)

S : := x:= M | if M then S1 else S2 end | while M do S end |S; S′ |ε
In the above, M stands for an expression,4 and S stands for a statement or

command. CDclLst is a sequence of constant definitions, and VDclLst is a list
of variable declarations.

4We use M rather than E to represent expressions because we use E below to represent static type
information during type-checking.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 245

The intended meaning of most terms should be clear from our previous dis-
cussion. The set B of term constants must always contain the constants ok,
command, and nil. ok is of type PROGRAM, command is of type COMMAND, and nil is
of type Null. As with types, the order of fields in records is not significant. In
the following text we use =[c] ⊆ B to denote the set of constants with type c ∈ C.

The most significant difference between the concrete and abstract syntax is
the way in which we write instance variables and methods. The main idea is
that the keywords MyType and self are replaced by explicit parameters. We
also distinguish between sending methods and accessing instance variables
by reserving the parameter corresponding to self for sending messages, and
introducing a new term identifier selfinst and type identifier InstTypefor
the record of values of instance variables and its type. It is not really nec-
essary to separate self into these two pieces. However, we find it convenient
for the purposes of writing the semantics and proving the type safety of the
language.

We handle the keywords self, MyType, and so on, in class definitions by
making them parameters to the features in which they can appear. Because
instance variables can refer to MyType, but not self, in the abstract syntax,
we require that instance variables be functions with a type parameter MyType.
Methods are more complex, depending on MyType and self, as well as the new
type and term identifiers InstType and selfinst, so the concrete syntax of
methods includes all four of these as parameters.

What are the constraints on these new parameters? Not surprisingly, we
declare self to have type MyType, and selfinst to have type InstType. But these
typings won’t help much if we don’t know anything about MyType or InstType.

Let σ and τ be the types of the instance variables and methods of the class be-
ing defined (before adding the extra parameters). Recall that the class contains
initial values for the instance variables, whereas the objects contain locations
at which those initial values are stored. We use the function RecToMem to con-
vert a record type σ into one in which the type of each field is a reference to the
type in the original. That is, RecToMem({li: σi}i≤n) = {li: ref σi}i≤n.

Because the instance variables and methods of a class may be inherited in
subclasses, it would be a mistake to type-check them under the assumption
that MyType = ObjectType(MyType, τ) or that InstType=RecToMem(σ). In-
stead we need to ensure that the terms remain type correct in all subclasses.

Both in the expression MyType = ObjectType(MyType, τ) and in type bounds
of the form MyType<# ObjectType(MyType, τ), MyType occurs both as a free type
variable (the first occurrence in each expression) and as a bound variable. Using
the same identifier in both places may seem confusing. However, it allows us to
simplify the notation of many of our rules.

Recall that the types of objects generated by subclasses always match the
type of objects generated by the superclass. Thus it will always be safe to assume
that MyType<# ObjectType(MyType, τ). Similarly, because one can not change
the type of existing instance variables in subclasses, but only add new ones,
we may assume that InstType <: RecToMem(σ). (Note that because the types
of fields of RecToMem(σ) all involve reference types, subtyping rules ensure
that InstType can only differ from RecToMem(σ) by the addition of new fields.)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

246 • K. B. Bruce et al.

Fig. 10. NodeClass from Figure 2 in abstract syntax.

These constraints convey useful information as the two assumptions that
self: MyType and selfinst: InstType, when combined with the constraints
MyType<# ObjectType(MyType, τ) and InstType <: RecToMem(σ), allow us to
determine when a message send to self or the extraction of an instance variable
is guaranteed to be safe.

The only reason that subtype-bounded polymorphism is included in the con-
crete syntax is to be able to express this constraint on InstType for methods. The
implemented language’s syntax only includes match-bounded polymorphism.

Finally, in the concrete syntax, an unaccompanied message name m, or in-
stance variable v, denoted sending a message to self or extracting an instance
variable of self. However, in the abstract syntax we require that these be writ-
ten explicitly as self⇐ m and selfinst.v.

To illustrate these changes in syntax, we translate the definition of NodeClass
given in Figure 2 to the one in Figure 10, which is written in the abstract syntax.
Note that there is no reason to include MyType, self, or any other keyword in the
header of class expressions (the way we did with class and object types) because
all occurrences of the keywords have been replaced by parameters in the bodies
of instance variables and methods. Clearly no programmer would happily write
code this ugly, but it can all be generated automatically from the concrete syntax
shown in Figure 2. (See Appendix E for details of the translation.)

The type-checking axioms and rules for PolyTOIL are given in terms of a
type constraint system C, as defined earlier, and an identifier type assignment
E, which assigns types to free identifiers.

Definition 3.6. An identifier type assignment E (with respect to C) is a finite
set of associations between identifier and type expressions of the form x: τ ,
where each x is unique in E and C ` τ : TYPE. If the relation x: τ ∈ E, then we
write E(x) = τ .

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 247

The collection Term of terms of PolyTOIL with respect to C, E is the set of
preterms that can be assigned types with respect to the type-assignment axioms
and rules in Appendix A. Note that Appendix A has type rules for an extended
language that includes terms corresponding to semantics values that may occur
during evaluation of a program. Those terms are introduced in the next section.

The declaration type-assignment rules provided in Appendix A yield
expanded type assignments rather than just types. These expanded type
assignments are used to type-check the rest of the program. Thus an assertion
of the form C, E `s Dcl ¦ E ′ indicates that if a declaration Dcl is processed
under the type constraint system C and syntactic type assignment E, then
the richer syntactic type assignment E ′ results. For instance, the rule VarDecl
below asserts that processing a variable declaration of the form x: τ results in
adding x: ref τ to the initial syntactic type assignment.

VarDcl
C ` τ : TYPE x /∈ dom(E)

C, E `s x: τ ¦ E ∪ {x: ref τ } .

Type-assignment rules for terms are of the form C, E `s M : τ , indicating
that M has type τ if free identifiers are constrained by the assumptions in
C, E. If M is a command then the type τ will be COMMAND.

The subscript s on `s represents a subset of Loc and is a technical device that
is used in the proof of the subject reduction theorem. It essentially constrains
the deduction to only involve locations in s. The set s is only used explicitly in
the rule Location, discussed later, where it is used to ensure that the location
being type-checked is in dom(s). For the purposes of type-checking terms, the
s may safely be ignored.

The type-assignment rules for the commands and most non-object-oriented
expressions are standard, whereas those for the object-oriented expressions
may require some extra explanation. In the following we discuss the most inter-
esting rules. For convenience, those discussed below are repeated in Figure 11.

The type-assignment rule Class involves several interesting features. As
we noted earlier, we have eliminated the use of keywords MyType and self
in classes in favor of using a type parameter and a regular parameter of
that type. We have also introduced another parameter selfinst and a type
variable InstType, representing the record of instance variables and its
type. Thus the types of instance variables must be of the form ∀ MyType<#
ObjectType(MyType, τ).σi if the type of that instance variable in the class type
is σi. Similarly, type-checking will ensure that the types of methods are of
the form ∀ MyType<# ObjectType(MyType, τ).∀ InstType <: RecToMem(σ).
MyType → InstType → τ j . That is, the expanded form of methods will take
the parameters: the type MyType, the type InstType, the value self with type
MyType, and the value selfinst with type InstType, returning a value with
the declared type of the method, τ j . As discussed earlier, the constraints on the
parameters corresponding to MyType and InstType ensure that the instance
variables and methods will continue to be type-correct in subclasses.

We repeat that the σ and τ appearing in the resulting class type are
abbreviated from the actual types of the instance variables and methods by
only showing the resulting type after applying the parameters representing

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

248 • K. B. Bruce et al.

Fig. 11. Selected type-checking rules.

keywords of the language. This corresponds better to the types observable from
the concrete syntax shown in the previous section. Recall the discussion from
the beginning of this section (and compare Figures 2 and 10) on the difference
between the concrete syntax used in the earlier examples and the abstract
syntax used in this section. Although the type-checking rule for classes in
the abstract language appears very complex because of the extra parameters
added to instance variables and methods, the rule can be expressed in a much
simpler way in our original concrete syntax:5

Class
CIV, E `s Minst: σ, CMETH, EMETH `s Mmeth: τ
C, E `s class(Minst, Mmeth): ClassType(σ, τ)

,

5The reason for using the more complex abstract syntax makes the later proof of subject reduction
easier.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 249

where

—CIV = C ∪ {MyType<# ObjectType τ };
—CMETH = CIV ∪ {InstType <: RecToMem(σ)}; and
—EMETH = E ∪ {self: MyType, selfinst: InstType}.
—Neither MyType nor InstType may occur free in C or E, and τ must be the

type of a record of functions.

Here we have retained the separation of the two uses of self so that self
is used as the receiver of messages and selfinst is used to access instance
variables.

This rule should be significantly easier to understand for the programmer
as instance variables and methods do not have to be written as polymor-
phic functions in the concrete syntax. The abstract syntax presented here
is primarily needed in this article to prove the correspondence between
type-checking rules and the semantics. The correctness of this simplified
rule is discussed in Appendix E. The intuition behind it is that the extra
parameters added to instance variables and methods in the abstract syntax
are removed and pushed into the type constraint system C and identifier type
assignments.

The type-assignment rule Inherits for subclasses (classes with inherit
clauses) is similar to Class, but requires type-checking only the new or
modified components.6 It is not necessary to type-check inherited methods or
instance variables, since they were already type-checked under assumptions
that are still valid in the subclass. (In fact, even stronger assumptions hold
in the subclass.) Unlike Java or Object Pascal, one may replace a method in a
class by one in the subclass whose type is a subtype of the original.

The subclass rule first requires type-checking the superclass, and then
making sure that the types of overridden methods are subtypes of the cor-
responding types of the superclass. Because instance variables of classes are
associated with initial values, PolyTOIL allows the programmer to provide
new initial values to instance variables inherited from the supertype.

The subclass rule looks significantly more complicated than the class
rule, but most of the complications are due to notation. For example,
type-checking of new initial values of instance variables is exactly as with
classes.

The only significant difference between methods of subclasses and classes
is that methods in the subclasses take an extra first parameter, typically
written as super, representing the record of methods of the superclass. This
provides the ability to access methods of the superclass in the subclass.
Note that a message send to super must be of the form super.m [MyType]
[InstType] (self) (selfinst) in the abstract syntax because the type of m in
the record of methods from the superclass takes those four parameters.

6For simplicity, the type-checking rule for subclasses is given only for the special case where the
value of the first instance variable and the first method are overridden, and only one new instance
variable and method are added. The general case is similar, but notationally much messier.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

250 • K. B. Bruce et al.

Again, a much simpler type-checking rule for subclasses is available for the
original concrete syntax:

Inherits

C, E `s M : ClassType({ivi: σi}i≤n, {m j : τ j } j≤k),
CIV `s τ

′
1 <: τ1, CIV, E `s M V

1 : σ1, CIV, E `s M V
n+1: σn+1,

CMETH, EMETH `s M f
1 : τ ′1, CMETH, EMETH `s M f

k+1: τk+1

C, E `s class inherit M modifying iv1, m1({
iv1 = M V

1 : σ1, ivn+1 = M V
n+1: σn+1

}
,{

m1 = M f
1 : τ ′1, mk+1 = M f

k+1: τk+1
})

:
ClassType({ivi: σi}i≤n+1, {m j : τ ′j } j≤k+1)

,

where

—τ ′j = τ j for 2 ≤ j ≤ k + 1;

—CIV = C ∪ {MyType<# ObjectType {m j : τ ′j } j≤k+1};
—CMETH = CIV ∪ {InstType <: RecToMem({ivi: σi}i≤n+1)}, and
—EMETH = E ∪ {self: MyType, selfinst: InstType, super: {mj: τj}j≤k}.
—Neither MyType nor InstType may occur free in C or E.

The type-checking rule for message sending is interesting in that it uses the
matching relation. If C ` γ <# ObjectType(MyType, {m j : τ j }) and C, E `s M : γ
then M is guaranteed to have a method m j with type a subtype of τ j . Thus
M ⇐ m j is well typed and has a type obtained by replacing all free occurrences
of MyType in τ j by the type of M .

It might seem that a simpler version of the rule given in Figure 11 might be
sufficient. For example,

Msg’
C, E `s o: ObjectType{m j : τ j } j≤n

C, E `s o⇐ mi: τi[MyType 7→ ObjectType{m j : τ j } j≤n]
for i ≤ n.

Unfortunately, this simple rule is not sufficient to handle the case in which
a message is sent to self. That case would be written as self ⇐ m, where
self has type MyType<# ObjectType(MyType, τ). Since we cannot write the
type of self in the form ObjectType(MyType, τ ′), the simpler rule (Msg’) is
not applicable, and we must use the more complex rule given in Figure 11 and
Appendix A. (Similar difficulties would arise with sending a message to an
object whose type is given by a match-bounded type variable.)

The subsumption rule allows one to promote the type of an expression to a
supertype, and is used, for example, when one passes an actual parameter to a
function where the type of the actual parameter is a subtype of the type given
to the formal parameter.

Because instance variables are represented by a parameter whose type
is a subtype of a record of references, instance variables can be typed using
subsumption and record field extraction.

The last two type-checking rules from Appendix A have to do with constructs
that are not available to programmers, but that are useful in specifying the
semantics of programs. We postpone the discussion of the rule for closures to
Section 4.2.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 251

Now that we know what well-typed programs of PolyTOIL look like, in the
next section we define the semantics of PolyTOIL by defining reduction rules
for the language.

4. AN OPERATIONAL SEMANTICS FOR POLYTOIL

In this section we provide a natural (operational) semantics for PolyTOIL.
This semantics is similar to that given in Bruce et al. [1994] for TOOPLE. In
the following section we state and prove a subject reduction theorem, which
ties together our type-checking rules and the semantics. A simple corollary is
that our type-assignment rules are safe.

We extend the source language from the previous section by additional
constructs that may occur during evaluation of a program, although they
are not allowed to occur in the original program. The set M of expressions is
extended to include the following.

M : := . . . | error | tyerr | Loc | obj(M1, M2) |
〈function(x: τ) Block, ρ〉 | 〈function(t: TYPE) Block, ρ〉 |
〈function(t<# τ) Block, ρ〉 | 〈function(t <: τ) Block, ρ〉,

where Loc represents a collection of memory locations.
The expression error stands for a runtime error such as dividing by zero or

sending a message to nil. Because the static type system is not designed to pick
up this sort of runtime error, we would like a computation that results in this
value to be considered well typed. One option is to introduce a different error
term for every type. However, we adopt the (notationally) simpler strategy
of having a single error expression, but allow it to be assigned any type. The
expression tyerr represents a type error, which should never arise during
the evaluation of a well-typed program. There are no typing rules applicable
to typerr. Expressions of the form obj(M1, M2) represent the internal view
of objects with instance variables M1 and method suite M2. The typing rule
Object for these terms is simpler than the rule for classes because we need
not worry about extending objects with subclasses. The type-checking rules for
locations and closures are given later in this section.

Because functions are first-class in PolyTOIL (i.e., they may be assigned to
variables, passed in as arguments to functions, and returned as values from
functions), they are represented internally as closures. That is, an expression f
representing a function will be reduced to a pair 〈 f , ρ〉 consisting of the expres-
sion itself and the current environment ρ. (Environments are formally defined
in the next section.) The environment ρ must contain interpretations of all of
the free variables in f . When the closure is actually applied to an argument, it
updates the enclosed environment so that the formal parameter is interpreted
as the argument, and then evaluates its body using this updated environment.

The natural semantics for PolyTOIL provides a description of the reduction
rules for a simple interpreter for the language. A (runtime) environment keeps
track of the current values of identifiers, and the store keeps track of what
values are stored in currently active locations in memory. The semantic rules
reduce an expression M with associated environment ρ and current store s to

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

252 • K. B. Bruce et al.

a pair consisting of an irreducible value V and an updated store s′. We write
this as (M , ρ , s) ↓ (V , s′).

There are a number of semantic decisions involving binding time that
must be made carefully to provide a useful language. For example, for new to
create new objects each time it is invoked, it is important that locations for
instance variables are not allocated when their initial values are declared in
a class. Instead, they should only be allocated when a new object is created.
Similarly we do not evaluate the initial values of instance variables or method
bodies until a new object is created. Thus if the initial value of an instance
variable in a class depends on a global variable, it uses the value of that global
variable when the new object is created rather than the value when the class
is defined. This delayed evaluation will follow automatically from the fact that
all instance variables and methods are held as functions of at least one type
variable (representing MyType).

Another complication is that methods may refer to self and selfinst. Yet
the values of these reserved words are not known at the time a method body
is provided in a class definition. Thus the instantiation of the corresponding
values must be postponed until the new object is created.

In the following subsections we provide some technical definitions that
allow us to express the natural semantics of PolyTOIL. We then present and
explain the semantics.

4.1 Irreducible Values, Environments, and Stores

We begin by specifying the set of irreducible values. Irreducible values can
be understood as expressions representing the final values of a computation.
That is, there are no further computation rules that can be applied to these
expressions to simplify them.

Definition 4.1. The set of irreducible values (IrrVal) in PolyTOIL is the
set of expressions that includes constants in B, locations, error, tyerr, closures
(representing functions), and record, class, and object values with irreducible
components.

A type expression τ is closed if ∅ ` τ : TYPE.
Environments determine the values of free type and term variables at

runtime. All values of term variables in an environment are irreducible values.

Definition 4.2. An environment ρ (we also use κ, η for environments)
is a finite mapping of type variables to closed type expressions and of term
variables to irreducible values.

A store determines the values stored in locations at runtime. As with
environments, the values stored are irreducible values.

Definition 4.3. A store s is a finite mapping of locations in Loc to irreducible
values.

To assist in proving the subject-reduction theorem we presume that each
location in the store is associated with a fixed type. We write Locτ for the

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 253

collection of locations holding values of closed type τ , and interpret the
type ref τ as Locτ . It would be possible instead to have a single collection of
locations and keep a “store environment” that keeps track of the intended types
of allocated locations, but the approach used here is notationally a bit simpler.

The type-checking rule for locations, Location, is the only rule that explicitly
depends on the state s. If location l is in Locτ and is in the domain of s then l
has type ref τ . Because of this dependency of the type-checking rule on the
state, all of the type-checking rules are written using the notation `s.

The store is infinitely extensible. The function GetNewLoc is used to allocate
new memory locations. The new memory values are provided with a value of
the appropriate type to keep the memory consistent.

Definition 4.4. The function GetNewLoc takes a store s, a type τ , and an
irreducible value V , and returns an unused location l ∗ ∈ Locτ along with a
new store s[l ∗ 7→ V]. s∗ = s[l ∗ 7→ V] is defined so that dom(s∗) = dom(s) ∪ {l ∗},
and for l ∈ dom(s), s∗(l) = s(l) and s∗(l ∗) = V .

4.2 Substitutions Induced by Environments and Type-Checking Closures

Because PolyTOIL supports the application of polymorphic functions to type
expressions, and because some other constructs (such as records and regular
function definitions) include type expressions as part of the terms, types will
necessarily appear in our reduction rules. However, we also include some
other type information in the rules to make it simpler to prove soundness via
the subject-reduction theorem. Aside from indicating the amount of memory
necessary to be allocated for a new variable, this extra typing information is
inessential to the evaluation of terms.

Because the language is polymorphic, the types of terms can involve type
variables. The environment keeps track of the values of these type variables.
Because the result of evaluating a term is a pair of an irreducible value and
a state, and because our terms involve type information, we substitute in the
values of type variables from the environment as part of the computation. We
use the notations Mρ and τρ to stand for the result of replacing free variables
in an expression M and type expression τ by the values assigned to them by
the environment ρ. The long, but straightforward, formal definition of these
substitutions may be found in Appendix B.

Our subject reduction theorem shows that if we start out with a well-typed
term M , appropriate environment ρ, and state s, the resulting value V can be
assigned the same type as the original. For this to be true, we will need to be
certain that the state and environment are consistent with any assumptions
made in the typing of M .

Definition 4.5. 1. The state s is consistent, written |= s, if and only if for
all l ∈ Locτ ∩ dom(s), ∅, ∅ `s s(l): τ .

2. The environment ρ is consistent with C, E, s, written ρ |=s C, E, if and
only if (dom(C) ∪ dom(E)) ⊆ dom(ρ) and
(a) For all t ∈ dom(ρ), (t: TYPE) ∈ C implies ∅ ` ρ(t): TYPE;
(b) For all t ∈ dom(ρ), (t <: τ) ∈ C implies ∅ ` ρ(t) <: τρ ;

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

254 • K. B. Bruce et al.

(c) For all t ∈ dom(ρ), (t<# τ) ∈ C implies ∅ ` ρ(t)<# τρ ;
(d) For all x ∈ dom(ρ), (x: τ) ∈ E implies ∅, ∅ `s ρ(x): τρ .

Thus a state s is consistent if and only if for all τ , all locations simultaneously
in Locτ and s’s domain actually hold values of type τ . The consistency of an envi-
ronment with respect to C, E, and s depends on the fact that the interpretations
of the type and term variables are consistent with the assumptions in C and E.

With these definitions, we are now ready to discuss the type assignment
rule for closures. The following is rule Closure from Appendix A.

Closure
Ĉ, Ê `s f : σ → τ and ρ |=s Ĉ, Ê

C, E `s 〈 f , ρ〉: σρ → τρ
.

In a closure 〈 f , ρ〉, the environment ρ contains interpretations for all
free variables (term and type) in f . As a result, the values of C and E are
irrelevant in determining the type of 〈 f , ρ〉. Instead we create a new type
constraint system Ĉ, and syntactic type assignment Ê, which are consistent
with ρ and type-check f with respect to these systems. That is, create Ĉ, Ê
so that dom(Ĉ) ∪ dom(Ê) ⊆ dom(ρ) and ρ |=s Ĉ, Ê. If Ĉ, Ê `s f : σ → τ

then C, E `s 〈 f , ρ〉: σρ → τρ . The reason for the change in type is that the
environment ρ may contain values for type variables in σ → τ and these need
to be reflected in the final type of the closure.

We emphasize again that, because closures contain no free variables (they
are all bound in the enclosed environment), the type-checking takes place with
respect to a type constraint system and type assignment that are consistent
with respect to the enclosed environment.

The following lemma shows that when ρ is consistent with C, E, we can
relativize proofs of subtyping, matching, and type-checking. This will be useful
in proving subject-reduction.

LEMMA 4.6. (Substitution) Let ρ |=s C, E.

1. C ` τ : TYPE implies ∅ ` τρ : TYPE.
2. C ` σ <: τ implies ∅ ` σρ <: τρ .
3. C ` σ <# τ implies ∅ ` σρ <# τρ .
4. C, E `s M : τ implies ∅, ∅ `s Mρ : τρ .

PROOF. The proof proceeds by a simple induction on complexity of the
deduction of the left-hand side. The base case for variables in each case follows
from the definition of consistency of ρ.

4.3 Natural Semantics Rules for PolyTOIL

The natural semantics rules for PolyTOIL can be found in Appendix C. A
triple of a declaration, environment, and store reduces (by ↓decl) to a pair of
a new environment and state. That is, (D, ρ , s) ↓decl (ρ ′, s′). Programs, blocks,
statements, and expressions (with initial environment and state) all reduce (by
↓) to pairs of irreducible values and states. That is, (M , ρ , s) ↓ (v, s′), where v
is an irreducible value. Programs reduce to a default value ok, of type PROGRAM,

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 255

and statements reduce to a default value command, of type COMMAND. Thus, as
usual, the result of executing a statement is essentially just the updated state.

Because we wish to maintain a consistent state, allocation of new memory
via GetNewLoc (e.g., in variable declarations and expressions of the form new
c) requires the type of memory being allocated and an initial value of that
type. Since all instance variables are given initial values in class expressions,
these can be initialized easily. Other variables need not have initial values
declared, so they are initialized with an error value, which by type-checking
rule Error, can be assigned any type. (Alternatively, we could have insisted
that all variable declarations provide an initial value.)

The reduction rules for declarations and statements are relatively straight-
forward. As expected, the reduction rules for while loops are recursive.

Constants, locations, and closures are irreducible values and so are un-
changed by reduction. Variables reduce to the value given by the current
environment. If M is an expression representing a location (e.g., a variable)
then val M is reduced by first evaluating M to a location and then returning
the value stored in that location (as found in the state).7

All four types of function expressions reduce to closures using the four rules
starting with rule FunctionComp. Regular function applications proceed using
call-by-value according to rule FuncApplComp by first reducing the function
to a closure and the argument to a value. The environment of the closure is
updated to interpret the formal parameter as the actual parameter’s value.
This new environment is then used in reducing the body of the function.

Polymorphic functions are applied to type expressions. Although there are
no reduction rules for type expressions, we must handle properly any type
variables contained in the type parameter. To ensure that only closed types
are associated with values in the environment, in rule PolyFuncApplComp, for
example, we replace any type variables occurring in the actual type parameter
by the values assigned by the current environment. We then update the
closure’s environment with this modified type expression before evaluating the
body of the function.

Record expressions are reduced in rule RecordComp by evaluating each of
the fields of the record. Notice that the types of the fields are also evaluated by
replacing free type variables by the values assigned by the environment.

Class and object expressions are reduced by evaluating the initialization
code for instance variables and method expressions. Because each of these is
represented by a function, the results are records of closures.

The reduction rule for new M is the most complex. We repeat it in Figure 12
for ease of reference. In evaluating new M, the expression M is first reduced
to an irreducible value of the form class(IV,Methods). Since initial values
of instance variables are closures of the form 〈function(MyType<# γ̂i) Bi, ηi〉,

7We have been rather cavalier in our treatment of errors in these rules. For example, in the
FuncAppl Comp rule, we should add that this rule returns V only if V2 6= error. We omitted

inserting these qualifiers in these rules to avoid making the computation rules even harder to
read. In Appendix C.2, we indicate how these rules should be patched to ensure the propagation of
errors.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

256 • K. B. Bruce et al.

Fig. 12. Reduction rule for new expressions.

representing functions parameterized by MyType, we apply each of these
functions to the meaning of MyType, which is the type ObjectType(MyType, τρ).

We accomplish this application by augmenting the environment of the
closure by interpreting MyType by ObjectType(MyType, τρ), where ObjectType
(MyType, τ) is the type of object generated by M, and ρ is the environment
in which new M is evaluated. The body of the function Bi, representing the
initial value of the instance variable, is then evaluated in this augmented
environment to give a result Vi. The function GetNewLoc is used to allocate
new locations newLi for each of the instance variables of the object and the
initial values Vi of the instance variables are stored in those locations.

The methods are evaluated similarly by applying each of the methods of the
class successively to the intended values of MyType and InstType and reducing.
Note that the resulting methods are functions expecting values for self and
selfinst. The term ob, an object whose instance variables are set to be the
new locations newLi holding the initial values specified by the class and whose
methods are obtained as described above, is the result of evaluating new M.

Message sends are reduced in rule MsgComp by extracting the appropriate
method body for the method call from the object, supplying appropriate
values for self and selfinst (recall the methods needed values for self and
selfinst), evaluating, and finally returning the result (which is a closure as
methods always have functional type) as the value.

Extracting the value of instance variables from inside a method simply
involves extracting the location from selfinst, the record of instance variables,
so no new semantic rule beyond that given to extract fields of a record is needed.

The semantics of inheritance is not quite the obvious one. That is, one
would expect the new or modified values would be added to or replace the

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 257

corresponding values in the original class. However, we also rebind the type
bounds of type parameters in inherited methods and instance variables with a
constraint more appropriate for the subclass. As suggested in the type-checking
rules, super is interpreted inside each of the methods as the record of methods
of the superclass.

Appendix C.2 contains the semantic rules that generate runtime errors. The
object nil responds to all messages with a value error. The other rules ensure
that errors are propagated during computations.

We discuss the computation rules in Appendix C.3 in the next section, where
we discuss the type safety of the computation rules.

5. SUBJECT REDUCTION THEOREM

In this section we state the subject reduction theorem for PolyTOIL, and use
it to prove the type safety of the language. The details of the actual proof of
subject reduction can be found in Appendix D. Roughly, the subject reduction
theorem states that reduction (computation) preserves types.

THEOREM 5.1 (SUBJECT-REDUCTION). Let ρ |=s C, E and |= s.

1. If C, E `s M ¦ E∗ and (M , ρ , s) ↓decl (ρ∗, s∗) then ρ∗ |=s∗ C, E∗, |= s∗ and
dom(s) ⊆ dom(s∗).

2. If C, E `s M : τ and (M , ρ , s) ↓ (V , s∗) then ∅, ∅ `s∗ V : τρ , dom(s) ⊆ dom(s∗)
and |= s∗.

Part one of the theorem states that the runtime environment resulting from
processing declarations is consistent with the type assignment generated by
the type-checker. Part 2 states that if a well-typed term is reduced, then, if the
reduction terminates, the resulting irreducible value has a type corresponding
to that of the original term.

The theorem is stated carefully to take care of the case where the type τ
of the original term M involves one or more type variables. If M reduces to
an irreducible value V , then that value cannot involve any free term or type
variables. Hence one would expect V to have a type that is some instantiation
of τ . Because the environment ρ that M is reduced in has interpretations for all
type variables occurring in M , it is used to instantiate the type variables in τ .
Thus the theorem asserts that the type of the irreducible value is the type τ in
which all of the type variables have been replaced by their interpretations in ρ.

Note that if M evaluates to V then the “minimal” type of V may be a
subtype of the “minimal” type of M . A simple example is the following. Let
A <: B, let idB be the identity function taking arguments of type B, and let a
have type A. Then the “minimal” type of idB(a) is B, yet idB(a) clearly reduces
to a with type A.

The proof of subject reduction is given in Appendix D. It is a proof by induc-
tion on the depth of the computation tree. Most cases are straightforward. The
most complex and interesting cases are for function applications and for terms
involving constructing new objects (i.e., of the form new c), message passing,
and subclasses.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

258 • K. B. Bruce et al.

The subject reduction theorem shows that our type assignment rules are
sound in that computations preserve the types of terms. We now wish to prove
something a bit stronger: that computations of well-typed terms never get stuck,
that is, never produce a type error. In particular, a computation of a well-typed
term will never result in sending a message m to an object that does not have
m as a method. We say a computation from (M , ρ , s) becomes stuck if in one of
its computation subtrees a hypothesis of the form (M1, ρ1, s1) ↓ (V1, s∗1) must be
established, but (M1, ρ1, s1) ↓ (V ∗, s∗) and V ∗ does not have the same form as V1.

We provide the reader with some examples of when a computation might
get stuck. First, we try to evaluate the application 0(0) of the number 0 to
itself in a given environment ρ and state s. The only rule whose conclusion
describes how to derive a value for an application is the rule FuncApplComp. We
must establish the hypothesis (0, ρ , s) ↓ (〈function(x: σ̂) B, η〉, s1), but clearly
(0, ρ , s) ↓ (0, s) (using ConstantComp).

As a second example, suppose we try to evaluate the result of sending a
message changeMood to an object of class helloClass in Figure 1, for example,
evaluating new helloClass ⇐ changeMood when started with environment ρ
and state s. The only rule whose conclusion describes how to derive a value for
a message send is the rule MsgComp. We have no problems with establishing
the hypothesis (new helloClass, ρ , s) ↓ (ob, s1), but ob is an object that does
not contain the label changeMood in the record of object methods. In both cases
a runtime type error will occur. Of course in our type system, terms of the form
0(0) and new helloClass⇐ changeMood fail to type-check, and hence are illegal.

Our proof that reductions of well-typed terms do not become stuck is based
on the presentation in Section 7.2 from Gunter [1992]. We make a few changes
to our natural semantics. We do this by ensuring that we have appropriate
computation rules for each construct to encompass all of those cases that are
not currently handled by the semantics. In each of these cases, a new constant,
tyerr, will be the result of the computation. For example, in the evaluation
of a term of the form M (N), if M does not evaluate to a function closure,
then M (N) will evaluate to tyerr. A selection of these rules can be found
in Appendix C.3. It is somewhat tedious, but straightforward to write all of
these rules. (The rules can even be generated mechanically, since new rules
are written for cases when an original rule does not apply.) We consider tyerr
to be an (untyped) irreducible value. It is now straightforward to show that
computations starting from well-typed terms never get stuck.

We call the system that includes the rules for type errors the extended
natural semantics of PolyTOIL and use the notation ↓+ for its computation.
Except for the error terms (type and otherwise), we presume that all constants
of the language have a base type. We also assume that the only values of
type Bool are true, false, and error. It would also be possible to add new
computation rules for constants of functional types (e.g., arithmetic operators
on numbers), but we satisfy ourselves with this simplified version here. We
can now prove a subject reduction theorem for this new system.8

Using this new subject reduction theorem, it follows that

8Actually the proof of subject reduction given in the appendix is for this extended natural semantics.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 259

COROLLARY 5.2 (TYPE SAFETY). Let ρ |=s C, E and |= s. If C, E `s M : τ then
it is not the case that (M , ρ , s) ↓+ (tyerr, s∗).

This corollary follows directly from the subject reduction theorem for our
extended natural semantics. If (M , ρ , s) ↓+ (tyerr, s∗) then it would follow
from subject reduction that C, E `s tyerr: τρ , which is impossible since tyerr
cannot be assigned a type. This contradiction shows that no type error can
arise during the computation of a well-typed term.

Of course, we cannot ensure that those computations will actually terminate.
Simple examples of nonterminating computations include while statements
with true as the Boolean guard, and expressions involving sending a message
to an object whose corresponding method body sends the same message to self.

6. COMPARISON WITH OTHER WORK

PolyTOIL is a very expressive, yet type-safe, statically typed object-oriented
programming language. Its type system is more powerful and flexible than
other statically typed languages like C++, Java, and Object Pascal, while
avoiding the type-checking problems of Eiffel.

An important difference between PolyTOIL and these other typed object-
oriented languages is that the subtype and subclass hierarchies are no longer
identified. If one chooses to identify these hierarchies then one is either left
with an unsafe language (either by design, or with conventions that require
many type casts, essentially bypassing the type system), a language with
limited expressiveness, or a language that requires extra runtime or linktime
checks in order to preserve type safety.

PolyTOIL’s type system allows much greater flexibility than languages like
C++, Java, and Object Pascal, which do not support a special name for the
type of self or allow the modification of types of methods in subclasses. The
lack of these features greatly limits the expressiveness of these languages,
particularly in defining subclasses.

In PolyTOIL the types of instance variables and methods may be given in
terms of MyType. Thus when a subclass is defined, the types of the instance vari-
ables and methods automatically change to reflect that of the new object type.

The combination of the use of MyType and bounded polymorphism using
matching provides much of the flexibility found in languages using the (unsafe)
“covariant” rule for changing types of parameters in subclasses. A “covariant”
type system, such as that found in Eiffel, would consider DNodeType to be a
subtype of NodeType in the example in Figure 2. This design leads to type errors
unless another mechanism, such as a linktime global analysis of a program, is
added to identify those places where type-related errors could arise. PolyTOIL
does not need this kind of global analysis in order to ensure type safety.

We see PolyTOIL as providing a sound semantic basis for a new generation
of object-oriented programming languages that offer both increased expres-
siveness and a safe type system. An example of this impact is the language
Strongtalk [Bracha and Griswold 1993], which essentially has adopted the
typing rules for our earlier language TOOPLE [Bruce 1994] (along with a few
extensions) to type-check a subset of Smalltalk.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

260 • K. B. Bruce et al.

The language Theta [Day et al. 1995] was developed independently of this
work, but shares many of the features of PolyTOIL. In particular it supports
a mechanism for constraining polymorphism that is equivalent to our use of
bounded matching. The authors also argue that this mechanism is more useful
than bounds on type parameters based on subtyping. Unfortunately, Theta
does not appear to include a MyType construct, and it appears that inherited
methods must be type-checked again in the context of the subclass. The paper
claims that Theta is type safe but provides no supporting evidence. We expect
that the results of this article can be used to add flexibility to their type system,
while providing a proof of its type safety.

The theoretical work most similar to that described here is Eifrig et al.
[1994]. That paper presents an analysis of a statically typed object-oriented
language, LOOP, which is similar to the nonpolymorphic parts of PolyTOIL.
Results include proofs of type safety as well as the decidability of type-checking.

There are a few important differences between PolyTOIL and LOOP. LOOP
allows the use of self in the initial values of instance variables (although at the
cost of a substantially more complex semantics for object creation), and sup-
ports multiple inheritance. Its subtyping rules for object types differ substan-
tially from those for PolyTOIL. It includes folding and unfolding rules for object
types (similar to those typically used with recursive types), which allow one to
replace MyType by the type it represents. On the other hand, LOOP does not
include our rule for subtyping object types. As a result, object types that involve
MyType generally do not have subtypes. (More recent work on LOOP has resulted
in a more flexible type system that does capture more subtypes of object types.)

LOOP does not explicitly identify the concept of “matching,” although it
appears that the concept is implicitly supported in the type-checking rules
for methods. It would be interesting to design a language that combined the
strengths of LOOP and PolyTOIL.

The proof of type safety for LOOP differs from that sketched here in that
LOOP is first given a somewhat complicated translation into an imperative
language SOOP, which supports F-bounded polymorphism, but has no object-
oriented features. The proof of type soundness for SOOP can then be lifted to
LOOP. The operational semantics of LOOP is given via this translation into
SOOP, whereas we provide a more direct natural semantics for PolyTOIL that
includes objects as primitives.

Other researchers have performed interesting investigations of imperative
object-oriented languages by looking at translations into simpler calculi. Pierce
[1993], has extended his encoding of object-oriented languages in higher-order
bounded lambda calculi [Pierce and Turner 1994] to imperative languages. The
semantics are somewhat simpler than the semantics of PolyTOIL, requiring
one fewer fixed-point operator in creating types of objects. However, there is a
corresponding loss of expressiveness in that methods like the setNext method
of NodeClassType in Figure 2, which have parameters of type MyType, may not
be written as methods of the class.

Abadi and Cardelli [1994b,a, 1995] have written several papers investigat-
ing a series of low-level object calculi designed to serve as a foundation for
higher-level object-oriented programming languages. The same authors show

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 261

in their monograph [Abadi and Cardelli 1996] that one of these calculi can be
used to model TOOPLE and PolyTOIL. Such a foundational object calculus
should make it easier to explore new language features and prove type safety.

More recent work includes Igarashi et al.’s [1999] development of Feather-
weight Java as a testbed for experimenting with extensions of Java. Because
the core language is very simple, it is possible to prove type safety and other
theorems about simple extensions to this language.

A language PSOOL, similar to PolyTOIL, is described in the book, Founda-
tions of Object-Oriented Languages: Types and Semantics [Bruce 2002], by the
first author. That book provides a very different translational semantics for
the language. It also provides a very extensive list of references for related
work on the foundations of object-oriented languages.

The designs of TOOPLE, TOIL, and PolyTOIL were inspired by work
over the last 10 years in the study of typed object-oriented languages by the
theoretical programming languages community. Early analysis by Cardelli
[1988] (originally presented in 1984) led to the influential paper by Cardelli
and Wegner [1985], which introduced the construct of bounded quantification
as a means of modeling object-oriented features. The study of typed languages
in Cook et al. [1990] clearly explained the differences between subtyping
and inheritance, and proposed a way of modeling inheritance using bounded
quantification. Meanwhile Mitchell [1990] presented an operational semantics
for delegation-based object-oriented languages. (See also more recent work in
Fisher et al. [1998] and Fisher and Mitchell [1998].) The paper by Canning
et al. [1989] pointed out the necessity of using a more general notion of
bounded quantification, called F-bounded quantification, in order to truly
model features of object-oriented programming languages.

A series of other papers [Bruce and Longo 1990; Amadio 1991; Cardone 1989;
Abadi and Plotkin 1990; Bruce and Mitchell 1992] provided models sufficient
for interpreting the denotational semantics of higher-order bounded calculi,
and hence for the object-oriented languages that were encoded in these calculi.

It was only with the strong theoretical understanding of the semantic
underpinnings of object-oriented languages that we were able to make the
progress represented by this article on the design of type-safe object-oriented
programming languages.

7. FURTHER RESULTS AND EXTENSIONS TO POLYTOIL

We have proved the decidability of a type-checking algorithm for PolyTOIL
that is similar to the one described in Bruce et al. [1993]. Using this algorithm
we have built a prototype interpreter for PolyTOIL that is based on the natural
semantics given here.

With the assistance of Leaf Petersen and Jasper Rosenberg, then students
at Williams College, we have added new features to the language, improved the
interpreter, and improved the readability of the concrete syntax. New features
added include new control constructs, recursive types, arrays and other base
types, a shorthand type-inclusion notation (similar to that of Rapide [Katiyar
et al. 1994]), and programmer control over visibility of methods. We also added

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

262 • K. B. Bruce et al.

a new subtyping rule similar to that in Eifrig et al. [1994] that allows us to
deduce more subtype relations between object types. The new rule states that
if σ <# τ and all occurrences of MyType in τ are positive, then σ <: τ . We have
also written and run a large number of PolyTOIL programs that have led us
to these changes and have provided us with greater confidence in the strength
and flexibility of the language.

The type system for PolyTOIL allows the programmer greater flexibility
than most statically typed languages, while providing assurance that the static
type-checking rules guarantee type safety. We have been somewhat concerned,
however, with the added complexity for the programmer in needing to keep
track of two related, yet different, ordering on types: subtyping and matching.
In writing a number of PolyTOIL programs we were somewhat surprised to
find that we relied on matching quite heavily, but rarely used subtyping.

The paper by Gawecki and Matthes [1996] in ECOOP’96 presented a
language TooL, which is more complex than PolyTOIL in that the bound on
polymorphic types and classes could be specified using either subtyping or
matching, and type-checking of classes could be done assuming that MyType
either matched or was a subtype of the intended type of objects generated by
the class. After experimenting with the language, the authors decided their
language was too complex for programmers, and suggested dropping matching.

Because of our experience we have come to the opposite conclusion: subtyp-
ing is not as useful as matching (as long as we provide a mechanism to support
heterogeneous data structures). Research with Leaf Petersen resulted in the
design of an object-oriented language, LOOM, [Bruce et al. 1997] that supports
matching, but not subtyping, while still providing sufficient expressiveness
for programmers. A key feature of this language is the provision of type
expressions that allow the programmer to express that a value can have any
type that matches a given expression. We have been at work on this language
as a possible successor to PolyTOIL.

APPENDIX

A. TYPE-CHECKING RULES

The rules are defined with respect to a given store s.

OK C, E `s ok: PROGRAM

Command C, E `s command: COMMAND

Nil C, E `s nil: Null

Constant
∅ ` c: TYPE b ∈ =(c)

C, E `s b: c

Error
∅ ` τ : TYPE

C, E `s error: τ

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 263

Location
∅ ` τ : TYPE, L ∈ Locτ ∩ dom(s)

C, E `s L: ref τ

Variable C, E `s x: τ if E(x)= τ

Program
C, E `s B : COMMAND

C, E `s program p; B. : PROGRAM

ConstDecls
C, E `s CDcl Lst ¦ E∗

C, E `s const CDcl Lst ¦ E∗

ConstDcl∗ C, E `s x=M ¦ E1 C, E1 `s CDcl Lst ¦ E2

C, E `s x=M ; CDcl Lst ¦ E2

ConstDcl
C, E `s M : τ x /∈ dom(E)
C, E `s x=M ¦ E ∪ {x: τ }

VarDecls
C, E `s V Dcl Lst ¦ E∗

C, E `s var V Dcl Lst ¦ E∗

VarDcl∗ C, E `s x: τ ¦ E1 C, E1 `s V Dcl Lst ¦ E2

C, E `s x: τ ; V Dcl Lst ¦ E2

VarDcl
C ` τ : TYPE x /∈ dom(E)
C, E `s x: τ ¦ E ∪ {x: ref τ }

Block

C, E `s CDcls ¦ E1 C, E1 `s V Dcls ¦ E2
C, E2 `s S: COMMAND C, E2 `s M : τ

C, E `s CDcls V Dcls begin S return M end: τ

Assn
C, E `s x: ref τ C, E `s M : τ

C, E `s x: =M : COMMAND

Cond
C, E `s M : Bool C, E `s S1: COMMAND C, E `s S2: COMMAND

C, E `s if M then S1 else S2 end: COMMAND

While
C, E `s M : Bool C, E `s S: COMMAND

C, E `s while B do S end: COMMAND

StmtList
C, E `s S1: COMMAND C, E `s S2: COMMAND

C, E `s S1; S2: COMMAND

Value
C, E `s M : ref τ

C, E `s val M : τ

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

264 • K. B. Bruce et al.

Function
C, E ∪ {x: σ } `s B: τ

C, E `s function(x: σ) B: σ→ τ

PolyFunction
C ∪ {t: TYPE}, E `s B: τ

C, E `s function(t: TYPE) B: ∀t.τ

<# BdPolyFunction
C ∪ {t <# γ }, E `s B: τ

C, E `s function(t <# γ) B: ∀t <# γ.τ

<: BdPolyFunction
C ∪ {t<: γ }, E `s B: τ

C, E `s function(t<: γ) B: ∀t<: γ.τ

FuncAppl
C, E `s M1: σ→ τ C, E `s M2: σ

C, E `s M1(M2): τ

PolyFuncAppl
C, E `s M : ∀t.τ C `s σ : TYPE

C, E `s M [σ]: τ [t 7→ σ]

<# BdPolyFuncAppl
C, E `s M : ∀t <# γ.τ C `s σ <# γ

C, E `s M [σ]: τ [t 7→ σ]

<: BdPolyFuncAppl
C, E `s M : ∀t<: γ.τ C `s σ <: γ

C, E `s M [σ]: τ [t 7→ σ]

Record
C, E `s Mi: τi and li ∈ L f or 1≤ i≤n

C, E `s {li =Mi: τi}i≤n: {li: τi}i≤n

Proj
C, E `s M : {li: τi}i≤n

C, E `s M .li: τi
for all 1≤ i≤n

Class

C, E `s Ma: {ivi: ∀ MyType <# ObjectType(MyType, τ).σi, }i≤k
C, E `s Mb: {m j : ∀ MyType <# ObjectType(MyType, τ).
∀ InstType<: RecToMem(σ). MyType→ InstType→ τ j } j≤n

C, E `s class(Ma, Mb): ClassType(MyType, σ, τ)

where τ ={m j : τ j } j≤n, InstType /∈ F V (τ), σ ={li: σi}i≤k , and
RecToMem({li: σi}i≤k)={li: ref σi}i≤k

New
C, E `s M : ClassType(MyType, σ, τ)

C, E `s new M : ObjectType(MyType, τ)

Msg
C ` γ <# ObjectType(MyType, {m: τ }) C, E `s M : γ

C, E `s M ⇐ m: (τ [MyType 7→ γ])

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 265

Inherits

C, E `s M : ClassType(MyType, {ivi: σi}i≤n, {m j : τ j } j≤k)
C ∪ {MyType <# ObjectType(MyType, {m j : τ ′j } j≤k+ 1)} ` τ ′1<: τ1

C, E `s M V
1 : σ ∀1

C, E `s M V
n+ 1: σ ∀n+1

C, E `s M f
1 : {m j : τ ∀j } j≤k→ δ1

C, E `s M f
k+1: {m j : τ ∀j } j≤k→ δk+1

C, E `s class inherit M modifying iv1, m1;
({iv1=M V

1 : σ ∀1 , ivn+1=M V
n+1: σ ∀n+1},

{m1=M f
1 : {m j : τ ∀j } j≤k→ δ1,

mk+1=M f
k+1: {m j : τ ∀j } j≤k→ δk+1}):

ClassType(MyType, {ivi: σi}i≤n+1, {mi: τ ′i }i≤k+1)

where σ ∀i =∀MyType <# ObjectType(MyType, {m j : τ ′j } j≤k+1).σi,
for 1≤ i≤n+ 1,

τ ∀l =∀MyType <# ObjectType(MyType, {m j : τ j } j≤n).
∀ InstType<: RecToMem({ivi: σi}i≤n). MyType
→ InstType→ τl , for 1≤ l ≤ k,

δp=∀MyType <# ObjectType(MyType, {m j : τ ′j } j≤k+1).
∀ InstType<: RecToMem({ivi: σi}i≤n+1).MyType
→ InstType→ τ ′p, for 1≤ p≤ k+ 1,

τ ′j = τ j for 2≤ j ≤ k, and
InstType 6∈ F V (τ ′1) ∪ F V (τ ′k+1)

Subsump
C `s σ <: τ C, E `s M : σ

C, E `s M : τ

Closure →
Ĉ, Ê `s f : σ→ τ and ρ |=s Ĉ, Ê

C, E `s 〈 f , ρ〉: σρ→ τρ

Closure ∀
Ĉ, Ê `s f : ∀t.τ and ρ |=s Ĉ, Ê

C, E `s 〈 f , ρ〉: ∀t.τρ

Closure ∀<#
Ĉ, Ê `s f : ∀t <# γ.τ and ρ |=s Ĉ, Ê

C, E `s 〈 f , ρ〉: ∀t <# γρ.τρ

Closure ∀<:
Ĉ, Ê `s f : ∀t<: γ.τ and ρ |=s Ĉ, Ê

C, E `s 〈 f , ρ〉: ∀t<: γρ.τρ

An analogous rule holds for polymorphic (resp., bounded polymorphic)
functions.

Object

C, E `s Ma: (RecToMem(σ)[MyType 7→ ObjectType(MyType, τ)])
C, E `s Mb : {m j : (MyType→RecToMem(σ)→ τ j)

[MyType 7→ ObjectType(MyType, τ)]} j≤m

C, E `s obj(Ma, Mb) : ObjectType(MyType, τ)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

266 • K. B. Bruce et al.

LEMMA A.1. Let C, E `s M : τ . Then C ` τ : TYPE.
Let C, E `s M ¦ E∗. Then for all (x: τ) ∈ E∗, C ` τ : TYPE.

PROOF. Simple induction.

B. SUBSTITUTIONS WITH ENVIRONMENTS

Definition B.1. Let ρ be an environment (see Definition 4.2).
Define τρ by induction on the complexity of pretype expressions.

1. tρ = ρ(t) if t ∈ dom(ρ); otherwise tρ = t,
2. cρ = c,
3. (ref τ)ρ = ref τρ ,
4. (σ→ τ)ρ = σρ→ τρ ,
5. (∀t.τ)ρ =∀t.(τ)ρ ′ , where ρ ′ = ρ\{t} (i.e., remove t from domain of ρ),
6. (∀t <# σ.τ)ρ =∀t <# σρ ′ .(τ)ρ ′ , where ρ ′ = ρ\{t},
7. {m1: τ1; . . . ; mn: τn}ρ ={m1: (τ1)ρ ; . . . ; mn: (τn)ρ},
8. (ClassType(t, σ, τ))ρ = ClassType(t, σρ ′ , τρ ′), where ρ ′ = ρ\{t},
9. (ObjectType(t, τ))ρ = ObjectType(t, τρ ′), where ρ ′ = ρ\{t},

10. (∀t <: σ.τ)ρ =∀t <: σρ ′ .(τ)ρ ′ , where ρ ′ = ρ\{t}.
Define Mρ by induction on the complexity of preterms.

1. (Program x; Block)ρ = Program x; (Block)ρ ,
2. (CDecls VDecls begin S return E end)ρ =CDeclsρ VDeclsρ begin Sρ

returnEρ end,
3. (const CDcl Lst)ρ = const CDcl Lstρ ,
4. (x=M)ρ = x=Mρ ,
5. (x=M ; CDcl Lst)ρ = x=Mρ ; CDcl Lstρ ,
6. (var V Dcl Lst)ρ = var V Dcl Lstρ ,
7. (x: τ)ρ = x: τρ ,
8. (x: τ ; V Dcl Lst)ρ = x: τρ ; V Dcl Lstρ ,
9. xρ = ρ(x) if x ∈ dom(ρ); otherwise xρ = x,

10. bρ = b,
11. (val M)ρ = val Mρ ,
12. (function(x: σ) Block)ρ = function(x: σρ) Blockρ ′ , where ρ ′ = ρ\{x},
13. (function(t: TYPE) Block)ρ = function(t: TYPE) Blockρ ′ , where ρ ′ =

ρ\{t},
14. (function(t <# σ) Block)ρ = function(t <# σρ) Blockρ ′ , where ρ ′ = ρ\{t},
15. (M (M ′))ρ = (Mρ(M ′

ρ),
16. (M [τ])ρ =Mρ[τρ],
17. {m1=M1: τ1, . . . , mn=Mn: τn}ρ ={m1= (M1)ρ : (τ1)ρ , . . . , mn= (Mn)ρ : (τn)ρ},
18. (M .li)ρ =Mρ.li,

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 267

19. (class(M1, M2))ρ = class((M1)ρ , (M2)ρ),
20. (new M)ρ = new Mρ ,
21. (M ⇐ mi)ρ =Mρ ⇐ mi,
22. (class inherit M modifying iv1, m1;

({iv1=M V
1 : σ1, ivn=M V

n+1: σn+1}, {m1=M f
1 : τ1, mk+1=M f

k+1: τk+1}))ρ =
class inherit Mρ modifying iv1, m1;

({iv1= (M V
1)

ρ
: (σ1)ρ , ivn= (M V

n+1)
ρ
: (σn+1)ρ}, {m1= (M f

1)
ρ
: (τ1)ρ , mn+1

= (M f
k+1)

ρ
: (τk+1)ρ}),

23. errorρ = error,
24. tyerrρ = tyerr,
25. (function(t <: σ) Block)ρ = function(t <: σρ) Blockρ ′ , where ρ ′ = ρ\{t},
26. (〈function(x: τ) Block, η〉)ρ =〈 function(x: τ) Block, η〉,
27. (〈function(t: TYPE) Block, η〉)ρ =〈 function(t: TYPE) Block, η〉,
28. (〈function(t <# τ) Block, η〉)ρ =〈 function(t <# τ) Block, η〉,
29. (〈function(t <: τ) Block, η〉)ρ =〈 function(t <: τ) Block, η〉,
30. (obj(M1, M2))ρ = obj((M1)ρ , (M2)ρ),
31. (Loci)ρ = Loci,
32. (x: =M)ρ = (x: =Mρ),
33. (if M then S1 else S2 end)ρ = (if Mρ then (S1)ρ else (S2)ρ end),
34. (while M do S end)ρ = (while Mρ do Sρ end),
35. (S; S′)ρ = Sρ ; S′ρ .

Remark B.2. We use τ [t 7→ σ] as a shortcut for τρ , where dom(ρ)={t} and
ρ(t)= σ .

C. THE NATURAL SEMANTICS OF POLYTOIL

The natural semantics of PolyTOIL is given by the relations

1. ↓ ⊆ (Term× Env× State)× (IrrVal× State), and
2. ↓decl ⊆ (Term× Env× State)× (Env× State).

The first relation represents a computation, starting with a triple (M , ρ , s)
consisting of a term, runtime environment, and state, and ending with a
pair (V , s′) representing the final value of the term and the state at the
end of the computation. The second relation represents processing decla-
rations, starting with a triple (D, ρ , s) consisting of a declaration, runtime
environment, and state, and ending with a pair (ρ ′, s′) representing a new
environment and the state at the end of the elaboration. (The state might
change when evaluating an expression used to initialize a constant, for exam-
ple.) The new environment results from adding new bindings to the existing
environment.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

268 • K. B. Bruce et al.

Each relation is defined as the least relation that satisfies the following
axioms and rules.

C.1 NORMAL COMPUTATIONS

ConstantComp (b, ρ , s) ↓ (b, s) if b ∈ B

LocationComp (L, ρ , s) ↓ (L, s) if L ∈ Loc

V ariableComp (x, ρ , s) ↓ (ρ(x), s) if x ∈ X and x ∈ dom(ρ)

ProgramComp
(B, ρ , s) ↓ (command, s∗)

(program p; B. , ρ , s) ↓ (ok, s∗)

Const DeclsComp
(CDclLst, ρ , s) ↓decl (ρ∗, s∗)

(const CDclLst, ρ , s) ↓decl (ρ∗, s∗)

ConstDcl∗Comp
(x=M , ρ , s) ↓decl (ρ1, s1) (CDclLst, ρ1, s1) ↓decl (ρ2, s2)

(x=M ; CDclLst, ρ , s) ↓decl (ρ2, s2)

ConstDclComp
(M , ρ , s) ↓ (V , s∗)

(x=M , ρ , s) ↓decl (ρ[x 7→ V], s∗)

VarDeclsComp
(VDclLst, ρ , s) ↓decl (ρ∗, s∗)

(var VDclLst, ρ , s) ↓decl (ρ∗, s∗)

VarDcl∗Comp
(x: τ, ρ , s) ↓decl (ρ1, s1) (VDclLst, ρ1, s1) ↓decl (ρ2, s2)

(x: τ ; VDclLst, ρ , s) ↓decl (ρ2, s2)

VarDclComp
(newL, s∗)= (GetNewLoc s τρ error)

(x: τ, ρ , s) ↓decl (ρ[x 7→ newL], s∗)

BlockComp

(CDcls, ρ , s) ↓decl (ρ1, s1) (VDcls, ρ1, s1) ↓decl (ρ2, s2)
(S, ρ2, s2) ↓ (command, s3) (M , ρ2, s3) ↓ (V , s∗)

(CDcls VDcls begin S return M end, ρ , s) ↓ (V , s∗)

AssnComp
(x, ρ , s) ↓ (L, s∗) (M , ρ , s∗) ↓ (V , s∗∗)
(x: =M , ρ , s) ↓ (command, s∗∗[L 7→ V])

Cond true
Comp

(M , ρ , s) ↓ (true, s1) (S1, ρ , s1) ↓ (command, s2)
(if M then S1 else S2 end, ρ , s) ↓ (command, s2)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 269

Cond false
Comp

(M , ρ , s) ↓ (false, s1) (S2, ρ , s1) ↓ (command, s2)
(if M then S1 else S2 end, ρ , s) ↓ (command, s2)

While true
Comp

(M , ρ , s) ↓ (true, s1) (S, ρ , s1) ↓ (command, s2)
(while M do S end, ρ , s2) ↓ (command, s3)
(while M do S end, ρ , s) ↓ (command, s3)

While false
Comp

(M , ρ , s) ↓ (false, s∗)
(while M do S end, ρ , s) ↓ (command, s∗)

StmtListComp
(S1, ρ , s) ↓ (command, s1) (S2, ρ , s1) ↓ (command, s2)

(S1; S2, ρ , s) ↓ (command, s2)

ValueComp
(M , ρ , s) ↓ (L, s∗)

(val M , ρ , s) ↓ (s∗(L), s∗)

FunctionComp (function(x: σ) B, ρ , s) ↓ (〈function(x: σ) B, ρ〉, s)

PolyFunctionComp (function(t: TYPE) B, ρ , s) ↓ (〈function(t: TYPE) B, ρ〉, s)

<# BdPolyFunctionComp (function(t <# γ) B, ρ , s)↓ (〈function(t <# γ) B, ρ〉, s)

<: BdPolyFunctionComp (function(t <: γ) B, ρ , s) ↓ (〈function(t<: γ) B, ρ〉, s)

FuncApplComp

(M1, ρ , s) ↓ (〈function(x: σ̂) B, η〉, s1) (M2, ρ , s1) ↓ (V2, s2)
(B, η[x 7→ V2], s2) ↓ (V , s3)

(M1M2, ρ , s) ↓ (V , s3)

PolyFuncApplComp

(M , ρ , s) ↓ (〈function(t: TYPE) B, η〉, s1)
(B, η[t 7→ σρ], s1) ↓ (V , s2)

(M [σ], ρ , s) ↓ (V , s2)

<# BdPolyFuncApplComp

(M , ρ , s) ↓ (〈function(t <# γ̂) B, η〉, s1)
(B, η[t 7→ σρ], s1) ↓ (V , s2)

(M [σ], ρ , s) ↓ (V , s2)

<: BdPolyFuncApplComp

(M , ρ , s) ↓ (〈function(t<: γ̂) B, η〉, s1)
(B, η[t 7→ σρ], s1) ↓ (V , s2)

(M [σ], ρ , s) ↓ (V , s2)

RecordComp

(Mi, ρ , si) ↓ (Vi, si+1) for all 1≤ i≤n
({l1=M1: τ1, . . . , ln=Mn: τn}, ρ , s1) ↓ ({l1=V1: (τ1)ρ , . . . , ln=Vn: (τn)ρ}, sn+1)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

270 • K. B. Bruce et al.

ProjComp
(M , ρ , s) ↓ ({l1=V1: τ̂1, . . . , ln=Vn: τ̂n}, ρ , s∗)

(M .li, ρ , s) ↓ (Vi, s∗) for all 1≤ i≤n

ClassComp
(Ma, ρ , s) ↓ (Va, s1) (Mb, ρ , s1) ↓ (Vb, s2)
(class(Ma, Mb), ρ , s) ↓ (class(Va, Vb), s2)

NewComp

(M , ρ , s) ↓ (class({ivi =〈function(MyType <# γ̂i) Bi, ηi〉: σ ∀i }i≤n
{m j =〈function(MyType <# γ̂ j) Bj , κ j 〉: τ ∀j } j≤k) , s1)

...
(Bi, ηi[MyType 7→ ObjectType(MyType, τρ)], si) ↓ (Vi, si+1)

...
(newLi, sn+i+1)= (GetNewLoc sn+i (σi)ρ[MyType

7→ ObjectType(MyType, τρ)] Vi)
...

(Bj , κ j [MyType 7→ ObjectType(MyType, τρ)], s2n+2(j−1)+1)
↓ (〈function(InstType<: σ̂ j) B̂j , κ̂ j 〉, s2n+2 j)
(B̂j , κ̂ j [InstType 7→ RecToMem(σρ)], s2n+2 j)

↓ (〈function(self: ς j)
^

B j ,
^
κ j 〉, s2n+2 j+1)

...
(new M , ρ , s) ↓ (ob, s2n+2k+1)

where
σ ={ivi: σi}i≤n, τ ={m j : τ j } j≤k ,

C, E `s M : ClassType(MyType, σ, τ),
∅ ` σ ∀i <: ∀MyType <# ObjectType(MyType, τρ).(σi)ρ , for i≤n,
∅ ` τ ∀j <: ∀MyType <# ObjectType(MyType, τρ).∀ InstType<: RecToMem(σρ).

MyType→ InstType→ (τ j)ρ , for j ≤ k,
and
ob= obj({ivi =newLi: ref (σi)ρ[MyType 7→ ObjectType(MyType, τρ)]}i≤n,

{m j =〈 function(self: ς j)
^

B
j
, ^
κ

j 〉: (MyType→RecToMem(σρ)→ (τ j)ρ)
[MyType 7→ ObjectType(MyType, τρ)]} j≤k)

MsgComp

(M , ρ , s) ↓ (ob, s1)
(Bb, ηb[self 7→ ob], s1) ↓ (〈function(inst: δ̂InstType) Bc, ηc〉, s2)

(Bc, ηc[inst 7→ Va], s2) ↓ (〈function(x: α̂) B, κ〉, s3)
(M ⇐ m j , ρ , s) ↓ (〈function(x: α̂) B, κ〉, s3)

where
ob= obj(Va, {. . . , m j =〈function(self: δ̂MyType) Bb, ηb〉: τ̂ j , . . .})

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 271

InheritsComp

(M , ρ , s)↓(class({ . . . , ivi =V V
i : σ ∀i , . . .

}
,
{
. . . , m j =V f

j :τ ∀j , . . .
})

, s1
)

(M V
1 , ρ , s1) ↓ (V̂ V

1 , s2)
(M V

n+1, ρ , s2) ↓ (V V
n+1, s3)

(M f
1 , ρ , s3) ↓ (〈function(super: γ̂1) B1, κ1〉 , s4)

(M f
k+1, ρ , s4) ↓ (〈function(super: γ̂k+1) Bk+1, κk+1〉 , s5)

(B1, κ1[super 7→ {. . . , m j =V f
j : τ ∀j , . . .}], s5) ↓ (V̂ f

1 , s6)
(Bk+1, κk+1[super 7→ {. . . , m j =V f

j : τ ∀j , . . .}], s6) ↓ (V f
k+1, s7)

(class inherit M modifying iv1, m1;
({iv1=M V

1 : σ̂ ∀1 , ivn+1=M V
n+1: σ̂ ∀n+1},

{m1=M f
1 : {m1: τ ∀1 , . . . , mk : τ ∀k }→ δ1,

mk+1=M f
k+1: {m1: τ ∀1 , . . . , mk : τ ∀k }→ δk+1}), ρ , s) ↓

(class({iv1= V̂ V
1 : (σ̂ ∀1)ρ , . . . , ivi =

^

V
V

i : (σ̂ ∀i)ρ , . . . , ivn+1=V V
n+1: (σ̂ ∀n+1)ρ},

{m1= V̂ f
1 : (τ̂ ∀1)ρ , . . . , m j =

^

V
f

j : (τ̂ ∀j)ρ , . . . , mk+1=V f
k+1: (τ̂ ∀k+1)ρ}), s7)

where
∅ ` σ ∀i <: ∀MyType <# ObjectType(MyType, τρ).(σi)ρ , for 1≤ i≤n
∅ ` τ ∀j <: ∀MyType <# ObjectType(MyType, τρ).∀ InstType<: RecToMem(σρ).

MyType→ InstType→ (τ j)ρ , for 1≤ j ≤ k
σ̂ ∀i =∀MyType<# ObjectType(MyType, {m1: τ̂1, . . . , mk+1: τk+1}).σi,

for 1≤ i≤n+ 1
τ̂ ∀j =∀MyType <# ObjectType(MyType, {m1: τ̂1, . . . , mk+1: τk+1}).

∀ InstType<:RecToMem({iv1: σ1, . . . , ivn+1: σn+1}).
MyType→ InstType→ τ j , for 1≤ j ≤ k+ 1

δp=∀MyType <# ObjectType(MyType, m1: τ̂1, . . . , mk+1: τk+1).
∀ InstType<: RecToMem({iv1: σ1, . . . , ivn+1: σn+1}).
MyType→ InstType→τ̃p, for 1≤ p≤ k+ 1

τ̃1= τ̂1 and τ̃k+1= τk+1
^

V
V

i =〈function(MyType <# ObjectType(MyType, {m1: (τ̂1)ρ , . . . , mk+1: (τk+1)ρ})).
V V

i [MyType], η∅〉, for 2≤ i≤n
^

V
f

j =〈function(MyType <# ObjectType(MyType, {m1: (τ̂1)ρ , . . . , mk+1: (τk+1)ρ})).
function(InstType<: RecToMem({iv1: (σ1)ρ , . . . , ivn+1: (σn+1)ρ}))

V f
j [MyType][InstType], η∅〉, for 2≤ j ≤ k

and η∅ is the empty environment

ClosureComp (〈M , η〉, ρ , s) ↓ (〈M , η〉, s)

ObjectComp
(Ma, ρ , s) ↓ (Va, s1) (Mb, ρ , s1) ↓ (Vb, s2)

(obj(Ma, Mb), ρ , s) ↓ (obj(Va, Vb), s2)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

272 • K. B. Bruce et al.

C.2 Computations Resulting in Nontype Errors

These errors may occur in type-correct programs and thus are not prevented
by the type system. The only significant error that can be generated during
a computation is that resulting from sending a message to nil. Other rules
simply propagate errors through computations.

Of course one would probably choose to have primitive operations (division
by zero, arithmetic overflow, etc.) also generate errors. We have not specified
such primitive operations here.

Errorerror (error, ρ , s) ↓ (error, s)

Msgnil
(M , ρ , s) ↓ (nil, s1)

(M ⇐ m j , ρ , s) ↓ (error, s1)

Msgerror

(M , ρ , s) ↓ (obj(Va, {. . . , m j = error: τ̂ j , . . .}), s1)
or (M , ρ , s) ↓ (obj(error, {. . .}), s1)

(M ⇐ m j , ρ , s) ↓ (error, s1)

Errorpropagating
. . . , (Mi, ρi, si) ↓ (error, ŝi) , . . .

(M , ρ , s) ↓ (error, ŝi)

Here for each term construction
C, E `s M1: τ1 , . . . , C, E `s Mn: τn

C, E `s M : τ

we add extra semantics rules which indicate that if any of the subterms Mi
needed in the computation evaluate to error, then the term M evaluates to error.

C.3 Computations Resulting in Type Errors

These rules specify computation errors that should never occur in type-correct
programs. They are only included for use in the subject reduction theorem and
its corollaries, where it is shown that they can never apply if we start off with
a program that is assigned a type by our type-checking rules.

Accordingly, rather than listing several pages of rules that will never apply
we simply provide representative samples. (A complete listing of these rules is
available from the authors.)

Errortyerr (tyerr, ρ , s) ↓ (tyerr, s)

VariableEnv (x, ρ , s) ↓ (tyerr, s) if x ∈ X and x 6∈ dom(ρ)

AssnLocation
(x, ρ , s) ↓ (V , s∗) V 6∈ (Loc ∩ dom(s∗)) ∪ {error}

(x: =M , ρ , s) ↓ (tyerr, s∗)

CondBool
(M , ρ , s) ↓ (V , s1) V 6∈ {true, false, error}

(if M then S1 else S2 end, ρ , s) ↓ (tyerr, s1)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 273

CondCommand
(M , ρ , s) ↓ (V , s1) (Si, ρ , s1) ↓ (Vi, s2) Vi 6∈ {command, error}

(if M then S1 else S2 end, ρ , s) ↓ (tyerr, s2)

ValueLocation
(M , ρ , s) ↓ (V , s∗) V 6∈ (Loc ∩ dom(s∗)) ∪ {error}

(val M , ρ , s) ↓ (tyerr, s∗)

FuncApplAbstr
(M1, ρ , s) ↓ (V , s1) V 6∈ {〈function(x: σ) B, η〉, error}

(M1M2, ρ , s) ↓ (tyerr, s1)

FuncApplArg
(M1, ρ , s) ↓ (〈function(x: σ̂) B, η〉, s1) (M2, ρ , s1) ↓ (tyerr, s2)

(M1M2, ρ , s) ↓ (tyerr, s2)

PolymorphicFuncApplAbstr

(M , ρ , s) ↓ (V , s1) V 6∈ {〈function(t: TYPE) B, η〉,
〈function(t <# τ) B, η〉

〈function(t <: τ) B, η〉, error}
(M [σ], ρ , s) ↓ (tyerr, s1)

NewClass
(M , ρ , s) ↓ (V , s1) V 6∈ {class(V1, V2), error}

(new M , ρ , s) ↓ (tyerr, s1)

New<#BdPolyFunc

(M , ρ , s)↓(class({. . . , ivi =Vi:σ ∀i , . . .}, {. . . , m j =Vj : τ ∀j , . . .}), s1)
Vi or Vj 6∈ {〈function(t <# τ) B, η〉, error}

(new M , ρ , s) ↓ (tyerr, s1)

plus similar rules for later stages of the computation of new M

MsgObj
(M , ρ , s) ↓ (V , s1) V 6∈ {obj(V1, V2), nil, error}

(M ⇐ m j , ρ , s) ↓ (tyerr, s1)

MsgNot Understood

(M , ρ , s) ↓ (obj(Va, {. . . , mki

= 〈function(self: δ̂M T) Bb, ηb〉: τ̂ki , . . .}), s1)∀i: mki 6= m j

(M ⇐ m j , ρ , s) ↓ (tyerr, s1)

MsgInstVar
(M , ρ , s)↓obj(tyerr, {. . . , m j =〈function(self: δ̂M T)Bb, ηb〉:τ̂ j , . . .})

(M ⇐ m j , ρ , s) ↓ (tyerr, s1)

MsgClosure1

(M , ρ , s) ↓ (obj(Va, {. . . , m j =Vj , . . .}), s1)
Vj 6∈ {〈function(x: σ) B, η〉, error}

(M ⇐ m j , ρ , s) ↓ (tyerr, s1)

MsgClosure2

(M , ρ , s) ↓ (ob, s1)
(Bb, ηb[self 7→ ob], s1) ↓ (Vb, s2)

Vb 6∈ {〈function(x: σ) B, η〉, error}
(M ⇐ m j , ρ , s) ↓ (tyerr, s2)

where ob= obj(Va, {. . . , m j =〈function(self: δ̂ MyType) Bb, ηb〉: τ̂ j , . . .})
ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

274 • K. B. Bruce et al.

MsgClosure3

(M , ρ , s) ↓ (ob, s1)
(Bb, ηb[self 7→ ob], s1) ↓ (〈function(inst: δ̂InstType) Bc, ηc〉, s2)

(Bc, ηc[inst 7→ Va], s2) ↓ (Vc, s3)
Vc 6∈ {〈function(x: σ) B, η〉, error}

(M ⇐ m j , ρ , s) ↓ (tyerr, s3)

where ob= obj(Va, {. . . , m j =〈function(self: δ̂ MyType) Bb, ηb〉: τ̂ j , . . .})

InheritsClass
(M , ρ , s) ↓ (V , s1) V 6∈ {class(V1, V2), error}

(class inherit M modifying iv1, m1;
({iv1=M V

1 : σ̂ ∀1 , ivn+1=M V
n+1: σ̂ ∀n+1},

{m1=M f
1 : {m1: τ ∀1 , . . . , mk : τ ∀k }→ δ1,

mk+1=M f
k+1: {m1: τ ∀1 , . . . , mk : τ ∀k }→ δk+1}), ρ , s) ↓

(tyerr, s1)

InheritsClosure1

(M , ρ , s)↓(class({. . . , ivi=V V
i :σ ∀i , . . .}, {. . . , m j=V f

j :τ ∀j , . . .}), s1)
(M V

1 , ρ , s1) ↓ (V̂ V
1 , , s2)

(M V
n+1, ρ , s1) ↓ (V V

n+1, , s3)
(M f

1 , ρ , s3) ↓ (V f
1 , s4) V f

1 6∈ {〈function(x: σ) B, η〉, error}
(class inherit M modifying iv1, m1;

({iv1=M V
1 : σ̂ ∀1 , ivn+1=M V

n+1: σ̂ ∀n+1},
{m1=M f

1 : {m1: τ ∀1 , . . . , mk : τ ∀k }→ δ1,
mk+1=M f

k+1: {m1: τ ∀1 , . . . , mk : τ ∀k }→ δk+1}), ρ , s) ↓
(tyerr, s4)

InheritsClosure2

(M , ρ , s)↓(class({. . . , ivi=V V
i :σ ∀i , . . .}, {. . . , m j=V f

j :τ ∀j , . . .}), s1)
(M V

1 , ρ , s1) ↓ (V̂ V
1 , , s2)

(M V
n+1, ρ , s1) ↓ (V V

n+1, , s3)
(M f

1 , ρ , s3) ↓ (〈function(super: γ̂ 1) B1, κ1〉 , s4)
(M f

k+1, ρ , s4) ↓ (V f
k+1, s5) V f

k+1 6∈ {〈function(x: σ) B, η〉, error}
(class inherit M modifying iv1, m1;

({iv1=M V
1 : σ̂ ∀1 , ivn+1=M V

n+1: σ̂ ∀n+1},
{m1=M f

1 : {m1: τ ∀1 , . . . , mk : τ ∀k }→ δ1,
mk+1=M f

k+1: {m1: τ ∀1 , . . . , mk : τ ∀k }→ δk+1}), ρ , s) ↓
(tyerr, s5)

D. SUBJECT REDUCTION FOR POLYTOIL

In this section we present the proof of the type safety of PolyTOIL. In particular
we first show that types are preserved under computation. It will follow from
the proof of this theorem that type-correct terms never evaluate to tyerr. An-
other way of saying this is that computations on type-correct terms will never
get “stuck.” (Recall that the rules resulting in tyerr were generated by writing
down rules for all cases not handled by the other computation rules.) Thus the
results in this section imply that the language PolyTOIL is statically type safe.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 275

We begin by characterizing the set of irreducible values of each type of the
language.

Definition D.1. Let ∅ ` τ : TYPE. Define [τ]s={V ∈ IrrV al | ∅, ∅ `s V : τ }.

LEMMA D.2. Let ∅ ` τ : TYPE. The set of irreducible elements of each type is
characterized by the following:

1. [c]s==[c] ∪ {error}
2. [Null]s={nil, error}
3. [Obj ect]s=

⋃
∅ ÒbjectType(MyType,τ):TYPE[ObjectType(MyType, τ)]s

4. [σ→ τ]s=
{〈function(x: σ̂) B, η〉|∃ Ĉ, Ê, σ̂ , τ̂ : Ĉ, Ê ∪ {x: σ̂ } `s B: τ̂ ,
∅ ` τ̂η <: τ, ∅ ` σ <: σ̂η, η |=s Ĉ, Ê} ∪ {error}

5. [∀t.τ]s=
{〈function(t: TYPE) B, η〉|∃ Ĉ, Ê, τ̂ : Ĉ ∪ {t: TYPE}, Ê `s B: τ̂ ,
{u: TYPE} ` τ̂η[t 7→ u] <: τ [t 7→ u], η |=s Ĉ, Ê} ∪ {error}

6. [∀t <# γ.τ]s=
{〈function(t <# γ̂) B, η〉|∃ Ĉ, Ê, γ̂ , τ̂ : Ĉ ∪ {t <# γ̂ }, Ê `s B: τ̂ ,
{u <# γ̂ } ` τ̂η[t 7→ u] <: τ [t 7→ u], γ̂η= γ , η |=s Ĉ, Ê} ∪ {error}

7. [∀t <: γ.τ]s=
{〈function(t <: γ̂) B, η〉|∃ Ĉ, Ê, γ̂ , τ̂ : Ĉ ∪ {t <: γ̂ }, Ê `s B: τ̂ ,
{u <: γ̂ } ` τ̂η[t 7→ u] <: τ [t 7→ u], γ̂η= γ , η |=s Ĉ, Ê} ∪ {error}

8. [{m1: τ1, . . . , mn: τn}]s=
{ {m1=V1: τ̂1, . . . , mn=Vn: τ̂n, . . . , mn+m=Vn+m: τ̂n+m}|for all 1≤ i
≤n+m, Vi ∈ [τ̂i]s and for all 1≤ i≤n, ∅ ` τ̂i <: τi } ∪ {error}

9. [ref τ]s= (Locτ ∩ dom(s)) ∪ {error}
10. [ObjectType(MyType, τ)]s=

⋃
{ MyType: TYPE} ` σ : TYPE⋃

∅ ` ObjectType(MyType,τ ∗) <: ObjectType(MyType,τ){obj(Ma, Mb)|Ma

∈ [RecToMem(σ)[MyType 7→ ObjectType(MyType, τ ∗)]]s, Mb
∈ [{. . . , m j : (MyType→RecToMem(σ)→ τ ∗j)

[MyType 7→ ObjectType(MyType, τ ∗)], . . .}]s} ∪ {error}
11. [ClassType(MyType, σ, τ)]s={class(Ma, Mb)|Ma ∈ [{. . . , ivi: ∀MyType

<# ObjectType(MyType, τ).σi, . . .}]s, Mb ∈ [{. . . , m j : ∀MyType
<# ObjectType(MyType, τ).∀InstType <: RecToMem(σ).

MyType→ InstType→ τ j , . . .}]s} ∪ {error}

PROOF. The proof is straightforward. We show here only two cases.
[σ→ τ]s: ⊆: Let V ∈ IrrVal such that ∅, ∅ `s V : σ→ τ . Then examination of the
typing rules shows that V must be either error or a closure. The former case
is trivial, so let us assume V =〈function(x: σ̂) B, η〉. The result follows from
examination of the typing derivation for 〈function(x: σ̂) B, η〉.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

276 • K. B. Bruce et al.

Ĉ, Ê ∪ {x: σ̂ } `s B: τ̂
Ĉ, Ê `s function(x: σ̂) B: σ̂→ τ̂ ∅ ` τ̂ <: τ̃ , ∅ ` σ̃ <: σ̂

Ĉ, Ê `s function(x: σ̂) B: σ̃→ τ̃ η |=s Ĉ, Ê
∅, ∅ ` 〈function(x: σ̂) B, η〉: σ̃η→ τ̃η

and

∅, ∅ ` 〈function(x: σ̂) B, η〉: σ̃η→ τ̃η ∅ ` τ̂η <: τ, ∅ ` σ <: σ̂η
∅, ∅ ` 〈function(x: σ̂) B, η〉: σ→ τ

⊇: Follows again from examination of the above derivation.

[ObjectType(MyType, τ)]s. Let V ∈ IrrVal such that ∅, ∅ `s V : ObjectType
(MyType, τ). By inspection of the typing (and subtyping) rules, V must be error,
nil, or an object with a derivation as below.

∅, ∅ `s Ma: (RecToMem(σ)[MyType 7→ ObjectType(MyType, τ ∗)])
∅, ∅`s Mb : {. . . , m j : (MyType→RecToMem(σ)→ τ ∗j)

[MyType 7→ ObjectType(MyType, τ ∗)], . . .}
∅, ∅`s obj(Ma, Mb) : ObjectType(MyType, τ ∗)

and
∅, ∅ `s obj(Ma, Mb): ObjectType(MyType, τ ∗)

∅ ` ObjectType(MyType, τ ∗) <: ObjectType(MyType, τ)
∅, ∅ `s obj(Ma, Mb): ObjectType(MyType, τ)

The result follows.

Having characterized the semantics of types, it is now easy to verify that
our typing rules are preserved by the semantics.

LEMMA D.3. If ∅ ` τ <: τ ∗ then [τ]s ⊆ [τ ∗]s.

PROOF. By definition, V ∈ [τ]s if and only if V ∈ IrrVal and ∅, ∅ ` V : τ . But
this implies that V ∈ IrrVal and ∅, ∅ ` V : τ ∗ (using subsumption), and hence
V ∈ [τ ∗]s.

LEMMA D.4. Let dom(s) ⊆ dom(s∗). Then for any ∅ ` τ : TYPE, [τ]s ⊆ [τ]s∗

PROOF. Simple induction.

The following is the main theorem of the section, stating that the types of
terms are preserved by the computation rules. As noted earlier, if E evaluates
to V then the “minimal” type of V may be a subtype of the “minimal” type of E.

THEOREM D.5 (SUBJECT-REDUCTION (SAME AS THEOREM 5.1). Let ρ |=s C, E and
|= s.

1. If C, E `s M ¦ E∗ and (M , ρ , s) ↓decl (ρ∗, s∗) then ρ∗ |=s∗ C, E∗, |= s∗ and
dom(s) ⊆ dom(s∗).

2. If C, E `s M : τ and (M , ρ , s) ↓ (V , s∗) then V ∈ [τρ]s∗ , dom(s) ⊆ dom(s∗) and
|= s∗.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 277

PROOF. The proof is by induction on the depth of computation
(M , ρ , s)↓ (V , s∗), where the base cases are : ConstantComp, LocationComp,
VariableComp, FunctionComp, PolyFunctionComp, <: BdPolyFunctionComp,
<# BdPolyFunctionComp, ClosureComp, Errorerror, Errortyerr, and VariableEnv.

In most cases |= s∗ and dom(s) ⊆ dom(s∗) follow immediately from the induc-
tion hypothesis, so that generally we do not bother to state the fact explicitly.

All type derivations are of the form

...
C, E ` M : τ1 C ` τ1 <: τ2
C, E ` M : τ2 C ` τ2 <: τ3

...
C, E ` M : τn C ` τn <: τ

C, E ` M : τ

where the last n steps involve only the application of subsumption. Sup-
pose (M , ρ , s) ↓ (V , s∗), and we know that V ∈ [(τ1)ρ]s. By Lemma 4.6,
∅ ` (τ1)ρ <: (τ)ρ , and therefore by Lemma D.3, V ∈ [τρ]s. To simplify the proof,
we use this fact implicitly and presume that the last step of the typing of
M is not an application of subsumption. In the following (unless indicated
otherwise) for each computation rule (e.g., ValueComp) the typing judgment is
obtained by applying the corresponding typing rule (e.g., Value) in the last
step of type derivation.

We leave out many of the simplest cases in the following proof. Cases omitted
include ConstantComp, ProgramComp, Condtrue

Comp and Condfalse
Comp, While true

Comp and

While false
Comp, StmtListComp, RecordComp, and ProjComp.

LocationComp. The claim holds as for all closed types τ, τρ = τ .

VariableComp. The claim holds as x ∈ dom(E) ⊆ dom(ρ) and, therefore,
ρ(x) ∈ [τρ]s (by the definition of ρ |=s C, E).

ConstDeclsComp. Follows trivially by the induction hypothesis on ConstDcl
and ConstDcl*.

ConstDcl*Comp. By the induction hypothesis on the first hypothesis of the
rule,

ρ1 |=s1 C, E1, dom(s) ⊆ dom(s1) and |= s1,

and induction on the second hypothesis gives

ρ2 |=s2 C, E2, dom(s1) ⊆ dom(s2) and |= s2.

The conclusion follows immediately.

ConstDclComp. By induction hypothesis V ∈ [τρ]s∗ , dom(s) ⊆ dom(s∗) and |=
s∗. It follows that ρ[x 7→ V](x) ∈ [τρ]s∗ and therefore ρ[x 7→ V] |=s∗ C, E ∪{x: τ }.

VarDclComp. If (newL, s∗)= (GetNewLoc s τρ error), then by the definition
of GetNewLoc, ρ[x 7→ newL](x) ∈ Locτρ ∩ dom(s∗) ⊆ [ref τρ]s∗ and hence
ρ[x 7→ newL] |=s∗ C, E ∪ {x: ref τ }. It is clear that dom(s) ⊆ dom(s∗).

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

278 • K. B. Bruce et al.

The cases for VarDeclsComp and VarDcl*Comp are similar to those above for
constant declarations.

BlockComp. By induction hypothesis on the four hypotheses of the rule,
ρ1 |= C, E1, |= s1, ρ2 |= C, E2, |= s2, |= s3, |= s∗, and V ∈ [τρ2]s∗ . However, because
processing constant and variable declarations does not add or change the values
of type variables in the environment, [τρ2]s∗ = [τρ]s∗ . The conclusion follows.

AssignComp. By induction hypothesis |= s∗, L ∈ [ref τρ]s∗ = (Locτρ ∩
dom(s∗)) ∪ {error}, |= s∗∗ and V ∈ [τρ]s∗∗ . Thus s∗∗[L 7→ V](L) ∈ [τρ]s∗∗ , so
|= s∗∗[L 7→ V] (if L = error, see rule Errorpropagating).

ValueComp. By induction hypothesis |= s∗, L ∈ [ref τρ]s∗ = (Locτρ ∩dom(s∗))∪
{error} (if L = error, see rule Errorpropagating). Therefore s∗(L) ∈ [τρ]s∗ .

FunctionComp. (function(x: σ) B, ρ , s) ↓ (〈function(x: σ) B, ρ〉, s). It follows
easily that 〈function(x: σ) B, ρ〉 ∈ [σρ→ τρ]s by taking Ĉ=C, Ê = E, σ̂ = σ,
τ̂ = τ , and η= ρ. (Here we are using the assumption that the last step of the
proof does not involve subtyping.)

The cases for PolyFunctionComp, <# BdPolyFunctionComp, and
<: BdPolyFunctionComp are similar to FunctionComp.

FuncApplComp. By induction hypothesis |= s1 and 〈function(x: σ̂) B, η〉 ∈
[σρ→ τρ]s1 . Thus there exist some Ĉ, Ê, σ̂ , τ̂ such that

Ĉ, Ê ∪ {x: σ̂ } ` B: τ̂ , ∅ ` τ̂η <: τρ , ∅ ` σρ <: σ̂η, and η |=s1 Ĉ, Ê.

Again by the induction hypothesis we have |= s2 and V2 ∈ [σρ]s2 . By Lemma D.3,
V2 ∈ [σ̂η]s2 . Thus η[x 7→ V2] |=s2 Ĉ, Ê∪{x: σ̂ }. Applying the induction hypothesis
one more time we get |= s3 and V ∈ [τ̂η]s3 . Lemma D.3 gives us V ∈ [τρ]s3 .

<# BdPolyFuncApplComp. By induction, |= s1 and 〈function(t <# γ̂)
B, η〉 ∈ [∀t <# γ̂ρ .τρ]s1 . Thus there exist some Ĉ, Ê, γ̂ , τ̂ such that

Ĉ ∪ {t <# γ̂ }, Ê ` B: τ̂ , {u <# γ̂η} ` τ̂η[t 7→ u] <: τρ[t 7→ u], γ̂η= γρ ,

and η |=s1 Ĉ, Ê. By Lemma 4.6, ∅ ` σρ <# γρ , and hence η[t 7→ σρ] |=s2

Ĉ ∪ {t <# γ̂ }, Ê. Applying the induction hypothesis one more time we
get |= s2 and V ∈ [τ̂η[t 7→σρ]]s2 = [τ̂η[t 7→ σρ]]s2 . Substituting σρ for u we get
∅ ` τ̂η[t 7→ σρ] <: τρ[t 7→ σρ]. V ∈ [τρ[t 7→ σρ]]s2 follows from Lemma D.3.

The cases for PolyFuncApplComp and <: BdPolyFuncApplComp are similar.

ClassComp. By induction,

|= s1, Va ∈ [{. . . , ivi: ∀MyType <# ObjectType(MyType, τρ).(σi)ρ , . . .}]s1 , |= s2

and

Vb ∈ [{. . . , m j : ∀MyType <# ObjectType(MyType, τρ).∀InstType<:RecToMem(σρ).
MyType→ InstType→ (τ j)ρ , . . .}]s2 .

The claim follows from Lemmas D.4 and D.2.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 279

NewComp. By induction, |= s1 and

class({. . . , ivi =〈function(MyType <# γ̂i) Bi, ηi〉: σ ∀i , . . .},
{. . . , m j =〈function(MyType <# γ̂ j) Bj , κ j 〉: τ ∀j , . . .})
∈ [ClassType(MyType, σρ , τρ)]s1 .

Therefore

〈function(MyType <# γ̂i) Bi, ηi〉 ∈ [∀MyType <# ObjectType(MyType, τρ).(σi)ρ]s1

and

〈function(MyType <# γ̂ j) Bj , κ j 〉 ∈ [∀MyType <# ObjectType(MyType, τρ).
∀InstType <: RecToMem(σρ). MyType→ InstType→ (τ j)ρ]s1 .

First, there exist some Ĉi, Êi, γ̂i, σ̂i such that

Ĉi ∪ {MyType <# γ̂i}, Êi `s1 Bi: σ̂i, ηi |=s1 Ĉi, Êi,
{u <# (γ̂i)ηi } ` (σ̂i)ηi [MyType 7→ u] <: (σi)ρ[MyType 7→ u],

and

(γ̂i)ηi = ObjectType(MyType, τρ).

Obviously

ηi[MyType 7→ ObjectType(MyType, τρ)] |= Ĉi ∪ {MyType <# γ̂i}, Êi.

Applying the induction hypothesis again we get

|= si+1 and Vi ∈ [(σ̂i)ηi [MyType 7→ObjectType(MyType,τρ)]]si+1 .

Substituting ObjectType(MyType, τρ) for u we get

` (σ̂i)ηi [MyType 7→ ObjectType(MyType, τρ)] <: (σi)ρ[MyType 7→
ObjectType(MyType, τρ)].

It follows from Lemma D.3 that

Vi ∈ [(σi)ρ[MyType 7→ ObjectType(MyType, τρ)]]si+1 .

This proves that for 1≤ i≤n, |= sn+i+1 and

newLi ∈ Loc(σi)ρ [MyType 7→ObjectType(MyType,τρ)] ∩ dom(sn+i+1).

Analogous to the above steps, we show that |= s2n+2 j , |= s2n+2 j+1,

〈function(InstType <: σ̂ j) B̂ j , κ̂ j 〉
∈ [∀InstType <: RecToMem(σρ)[MyType 7→ ObjectType(MyType, τρ)].

ObjectType(MyType, τρ)→ InstType→ (τ j)ρ[MyType 7→
ObjectType(MyType, τρ)]]s2n+2 j

and

〈function(self: ς j)
^

B j ,
^
κ j 〉 ∈ [ObjectType(MyType, τρ)→

RecToMem(σρ)[MyType 7→ ObjectType(MyType, τρ)]→
(τ j)ρ[MyType 7→ ObjectType(MyType, τρ)]]s2n+2 j+1 .

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

280 • K. B. Bruce et al.

Obviously

{. . . , ivi =newLi: ref (σi)ρ[MyType 7→ ObjectType(MyType, τρ)], . . .}
∈ [RecToMem(σρ)[MyType 7→ ObjectType(MyType, τρ)]],

{. . . , m j =〈function(self: ς j)
^

B j ,
^
κ j 〉: (MyType→RecToMem(σρ)→ (τ j)ρ)

[MyType 7→ ObjectType(MyType, τρ)], . . .}
∈ [{. . . , m j : (MyType→RecToMem(σρ)→ (τ j)ρ)

[MyType 7→ ObjectType(MyType, τρ)], . . .}]s2n+2k+1

and by the Object rule,

ob ∈ [ObjectType(MyType, τρ)]s2n+2k+1 .

MsgComp. By Lemma 4.6, ∅ ` γρ <# ObjectType(MyType, {m j : (τ j)ρ}) and
therefore (γρ cannot be a type variable since C=∅)

γρ = ObjectType (MyType, {. . . , m j : τ̂ j , . . .})
and

{MyType<# ObjectType(MyType, {. . . , m j : τ̂ j , . . .})}`{. . . , m j : τ̂ j , . . .}<:{m j : (τ j)ρ}.
(1)

By the induction hypothesis |= s1 and ob∈ [ObjectType (MyType, {. . . , m: τ̂ j , . . .})].
This means that

Va ∈ [RecToMem(σ)[MyType 7→ ObjectType(MyType, τ ∗)]]s1 ,

and

〈function(self: δ̂MyType) Bb, ηb〉 ∈ [(MyType→RecToMem(σ)→ τ ∗j)
[MyType 7→ ObjectType(MyType, τ ∗)]]s1 .

for some σ and τ ∗ such that

∅ ` ObjectType(MyType, τ ∗) <: ObjectType(MyType, {. . . , m j : τ̂ j , . . .})= γρ ,

and therefore

{t: TYPE, s <: t} ` τ ∗[MyType 7→ s] <: {. . . , m j : τ̂ j , . . .}[MyType 7→ t]. (2)

There exist Ĉ, Ê, δ̂MyType, ξ̂ such that

Ĉ, Ê ∪ {self: δ̂MyType} ` Bb: ξ̂ , ηb |=s1 Ĉ, Ê,
∅ ` ξ̂ηb <: (RecToMem(σ)→ τ ∗j)[MyType 7→ ObjectType(MyType, τ ∗)]

and

∅ ` ObjectType(MyType, τ ∗) <: (δ̂MyType)ηb.

ηb[self 7→ ob] |= Ĉ, Ê ∪ {self: δ̂MyType} because

ob ∈ [ObjectType(MyType, τ ∗)]s1 ,

and, by Lemma D.3, ob ∈ [(δ̂MyType)ηb]s1 . Then by the induction hypothesis

〈function(inst: δ̂InstType) Bc, ηc〉 ∈
([RecToMem(σ)→ τ ∗j)[MyType 7→ ObjectType(MyType, τ ∗)]]s2 .

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 281

Similarily we can show that

〈function(x: α̂) B, κ〉 ∈ [τ ∗j [MyType 7→ ObjectType(MyType, τ ∗)]]s3 .

We have by Equation (2) that

∅ ` τ ∗[MyType 7→ ObjectType(MyType, τ ∗)] <: {. . . , m j : τ̂ j , . . .}[MyType 7→ γρ]

and by Equation (1),

∅ ` {. . . , m j : τ̂ j [MyType 7→ γρ], . . .} <: {m j : (τ j)ρ[MyType 7→ γρ]}.
Therefore

∅ ` τ ∗j [MyType 7→ ObjectType(MyType, τ ∗)] <: (τ j)ρ[MyType 7→ γρ]

and thus

〈function(x: α̂) B, κ〉 ∈ [(τ j)ρ[MyType 7→ γρ]]s3 ,

as desired. Obviously |= si for all i.

InheritsComp. By induction hypothesis |= s1,

V V
i ∈ [∀MyType <# ObjectType(MyType, {m1: (τ1)ρ , . . . , mk : (τk)ρ}).(σi)ρ]s1

and

V f
j ∈ [∀MyType <# ObjectType(MyType, {m1: (τ1)ρ , . . . , mk : (τk)ρ}).
∀InstType <: RecToMem({iv1: (σ1)ρ , . . . , ivn: (σn)ρ}).
MyType→InstType→ (τ j)ρ]s1 .

Then it is easy to see that
^

V
V

i ∈ [∀MyType <# ObjectType(MyType, {m1: (τ̂1)ρ , . . . , mk+1: (τk+1)ρ}).(σi)ρ]s7

and that
^

V
f

i ∈ [∀MyType <# ObjectType(MyType, {m1: (τ̂1)ρ , . . . , mk+1: (τk+1)ρ}).
∀InstType <: RecToMem({iv1: (σ1)ρ , . . . , ivn+1: (σn+1)ρ}).MyType→
InstType→ (τ̃i)ρ]s7 .

Again by the induction hypothesis, for i ∈ {1, n+ 1},
V̂

V
i ∈ [∀MyType <# ObjectType(MyType, {m1: (τ̂1)ρ , . . . , mk : (τk)ρ , mk+1: (τk+1)ρ}).

(σi)ρ]s2 (resp., s3)

and for j ∈ {1, k+ 1},
〈function(super: γ̂ j) Bj , κ j 〉
∈ [{m1: (τ ∀1)ρ , . . . , mk : (τ ∀k)ρ}→
∀MyType <# ObjectType(MyType, {m1: (τ̂1)ρ , . . . , mk+1: (τk+1)ρ}).
∀InstType <: RecToMem({iv1: (σ1)ρ , . . . , ivn+1: (σn+1)ρ}).

MyType→ InstType→ (τ̃1)ρ]s4 (resp., s5).

As in the previous cases we can show that

κ j [super 7→ {. . . , m j =V f
j : τ̃ ∀j , . . .}] |=s5 (resp., s6) Ĉ, Ê ∪ {super: γ̂ j }.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

282 • K. B. Bruce et al.

Applying the induction hypothesis one more time, we get

V̂
f
j ∈ [∀MyType <# ObjectType(MyType, {m1: (τ̂1)ρ , . . . , mk+1: (τk+1)ρ}).

∀InstType <: RecToMem({iv1: (σ1)ρ , . . . , ivn+1: (σn+1)ρ}).
MyType→ InstType→ (τ̃1)ρ]s6 (resp., s7)

Now it is straightforward to see that

class({iv1= V̂
V
1 : (σ̂ ∀1)ρ , . . . , ivi =

^

V
V

i : (σ̂ ∀i)ρ , . . . , ivn+1=V V
n+1: (σ̂ ∀n+1)ρ},

{m1= V̂
f
1 : (τ̂ ∀1)ρ , . . . , m j =

^

V
f

j : (τ̂ ∀j)ρ , . . . , mk+1=V f
k+1: (τ̂ ∀k+1)ρ})

∈ [ClassType(MyType, {iv1: (σ1)ρ , . . . , ivn+1: (σn+1)ρ},
{m1: (τ̂1)ρ , . . . , mk+1: (τk+1)ρ})]s7 .

It’s also obvious that for all i, |= si.

ClosureComp. Is trivial. (Note that σ̂η and τ̂η are closed types.)

ObjectComp. By the induction hypothesis |= s1, |= s2,

Va ∈ [RecToMem(σρ)[MyType 7→ ObjectType(MyType, τρ)]]s1

and

Vb ∈ [{m j : (MyType→RecToMem(σρ)→ (τ j)ρ)[MyType 7→
ObjectType(MyType, τρ)]} j≤m]s2 .

The claim follows from the typing rule for ObjectType(MyType, τρ).

Errorerror , Msgnil , Msgerror , and Errorpropagating . These all rely on the fact
that error ∈ [τ]s for any closed type τ .

Computations resulting in type errors. These rules cannot apply to well-
typed terms as the last condition of each computation rule will never be
satisfied. We show here only a few cases.

VariableEnv. This rule cannot apply to a well-typed x as dom(C, E) ⊆
dom(ρ) by the assumption that ρ |= C, E.

CondBool . Using the type rule Cond we have C, E `s M : Bool and by the
induction hypothesis V ∈ [Bool]s1 .

ValueLocation. Using the type rule Value we have C, E `s M : ref τ and by the
induction hypothesis V ∈ [ref τρ]s∗ . Now [ref τρ]s∗ = (Locτ ∩ dom(s)) ∪ {error}.

FuncApplAbstr . Using the type rule FuncAppl we have C, E `s M1: σ→ τ

and by the induction hypothesis V ∈ [σρ→ τρ]s∗ . So either V is a closure or V
is error.

FuncApplArg. Using the type rule FuncAppl we have C, E `s M2: σ . By the
induction hypothesis M2 must reduce to an element in [σρ]s2 . But tyerr 6∈ [γ]s2

for any closed type γ .

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 283

PolymorphicFuncApplAbst . We have three possible type derivations:
PolyFuncAppl, <# Bd Pol y FuncAppl , and <: BdPolyFuncAppl. In each
case, by the induction hypothesis, either V is a closure or V is equal to error.
If V = error then rule Errorpropagating applies.

New
<#BdPolyFunc. Using the type rule New we have

C, E `s M : ClassType(MyType, σ, τ). By the induction hypothesis M must
reduce to an element in [ClassType(MyType, σ, τ)ρ]s1 . Then either Vi, Vj are
closures or they are equal to error.

MsgNot understood. By the induction hypothesis |= s1 and ob= obj(Va,
{. . . , mki =〈function(self: δ̂M T) Bb, ηb〉: τ̂ki , . . .}) ∈ [ObjectType(MyType, τ̂)]s1

Therefore ob must be an object with the method m j .

COROLLARY D.6 (TYPE-SAFETY). Let ρ |=s C, E and |= s. If C, E `s M : τ then
it is not the case that (M , ρ , s) ↓ (tyerr, s∗).

PROOF. The result follows from Theorem 5.1, since tyerr 6∈ [τ]s for any
type τ.

E. CONCRETE VERSUS ABSTRACT SYNTAX

We provide here the concrete syntax for PolyTOIL and the translation rules
from concrete to abstract syntax. To keep the notational overhead as small
as possible, we work with a language that is a restricted version of PolyTOIL
(only one instance variable and one method in a class, exactly one parameter
to functions, no procedures, etc.). We assume that val, self ⇐ (. . .) and
selfinst.(. . .) are inferred and inserted by the type-checker at compile-time;
the source language does not require them. The constant super is annotated
with the ClassType of the superclass. This information is also inferred and
inserted by the type-checker.

E.1 Concrete Syntax and Types

Prog : : = program id; Block
Block : : = ConstDecl VarDecl begin StmtList return Expr end
ConstDecl : : = const id=Expr : T ypeExpr
VarDecl : : = var id=Expr : TypeExpr
ParDecl : : = id : TypeExpr |

id <# TypeExpr |
id <: TypeExpr

StmtList : : = id : = Expr; |
if Expr then StmtList else StmtList end; |
ε

TypeExpr : : = bool | num | MyType | void
TypeExpr→ TypeExpr |
ClassType({id : TypeExpr}, {id : TypeExpr}) |
ObjectType {id : TypeExpr}

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

284 • K. B. Bruce et al.

Expr : := b | id | nil | self |
val Expr |
selfinst.id |
superClassType(τ1,τ2).id |
Expr <= id |
function(ParDecl) : TypeExpr Block |
Expr(Expr) |
Expr[TypeExpr] |
new(Expr) |
class VarDecl MethodDecl end |
class inherit Expr modifying id MethodDecl end

MethodDecl : := methods id = function(id : TypeExpr) : TypeExpr Block

Types
τ : := t | c | ref τ | τ1 → τ2 | {l : τ } |

ClassType(τ1, τ2) | ObjectType τ |
∀t <# τ1.τ2 | ∀t <: τ1.τ2

E.2 Type-Checking, Subtyping and Matching Rules

OK C, E ` ok: PROGRAM

Command C, E ` command: COMMAND

Nil C, E ` nil: Null

Constant
∅ ` c: TYPE b ∈ =(c)

C, E ` b: c

Variable C, E ∪ {id: τ } ` id: τ id 6= superClassType(τ1,τ2)

Program
C, E ` block : COMMAND

C, E ` program p ; block : PROGRAM

ConstDecl
C, E ` exp : τ id /∈ dom(E)

C, E ` const id = exp : τ ¦ E ∪ {id : τ }

VarDecl
C, E ` exp : τ id /∈ dom(E)

C, E ` var id = exp : τ ¦ E ∪ {id : τ }

Block

C, E ` condecl ¦ E1 C, E1 ` vardecl ¦ E2
C, E2 ` stm : COMMAND C, E2 ` exp : τ

C, E ` condecl vardecl begin stm return exp end : τ

Assn
C, E ` id : ref τ C, E ` exp : τ

C, E ` id := exp : COMMAND

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 285

Cond
C, E ` exp: bool C, E ` stm1 : COMMAND C, E ` stm2 : COMMAND

C, E ` if exp then stm1 else stm2 end: COMMAND

Value
C, E ` exp : ref τ

C, E ` val exp : τ

Function
C, E ∪ {id : σ } ` bock : τ

C, E ` function(id : σ) : τ block : σ→ τ

<# BdPolyFunction
C ∪ {t <# γ }, E ` block : τ

C, E ` function(t <# γ) : τ block : ∀t <# γ.τ

<: BdPolyFunction
C ∪ {t <: γ }, E ` block : τ

C, E ` function(t <: γ) : τ block : ∀t <: γ.τ

FuncAppl
C, E ` exp1: σ→ τ C, E ` exp2: σ

C, E ` exp1(exp2) : τ

<# BdPolyFuncAppl
C, E `s exp: ∀t <# γ.τ C `s σ <# γ

C, E `s exp[σ]: τ [t 7→ σ]

<: BdPolyFuncAppl
C, E `s exp: ∀t<: γ.τ C `s σ <: γ

C, E `s exp[σ]: τ [t 7→ σ]

SupSel
CIV ` τ ′ <: τ

CMETH, EMETH ` superClassType({id:σ },{m:τ }).m : τ

where CIV, CMETH and EMETH have the same form as in rule Inherits.

VarSel
C, E ` selfinst : {id: σ }
C, E ` selfinst.id : σ

Class
CIV, E ` exp: σ CMETH, EMETH ` fm : τ

C, E ` class var id= exp: σ methods m= fm : τ end
: ClassType({id: σ }, {m: τ })

where

—CIV=C ∪ {MyType <# ObjectType {m: τ }}
—CMETH=CIV ∪ {InstType <: RecToMem({id: σ })} and
— EMETH= E ∪ {self: MyType, selfinst: InstType}

New
C, E ` exp :ClassType({id: σ }, {m: τ })
C, E ` new(exp): ObjectType {m: τ }

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

286 • K. B. Bruce et al.

Msg
C ` γ <#ObjectType {m: τ } C, E ` exp : γ

C, E ` exp<=m : (τ [MyType 7→ γ])

Inherits

C, E ` exp : ClassType({id: σ }, {m: τ }),
CIV ` τ ′ <: τ, CMETH, EMETH ` fm: τ ′

C, E ` class inherit exp modifying m methods m= fm : τ ′ end
: ClassType({id: σ }, {m: τ ′})

where

—CIV=C ∪ {MyType <# ObjectType {m: τ ′}}
—CMETH=CIV ∪ {InstType <: RecToMem({id: σ })}
— EMETH= E ∪ {self: MyType, selfinst: InstType, superClassType({id:σ },{m:τ }):
{m: τ }}

Subsump
C ` σ <: τ C, E ` exp : σ

C, E ` exp : τ

E.3 Translation Rules

Type Translation

1. [c]⇒ c
2. [t]⇒ t
3. [{l : δ}]⇒ {l : [δ]}
4. [σ → τ]⇒ [σ]→ [τ]
5. [ClassType(σ, τ)]⇒ ClassType(MyType, [σ], [τ])
6. [ObjectType τ]⇒ ObjectType(MyType, [τ])
7. [δ]m,τ ⇒ ∀MyType <# ObjectType(MyType, {m: [τ]}).[δ]
8. [δ]id,m,σ,τ ⇒ ∀MyType <# ObjectType(MyType, {m: [τ]}).

∀ InstType <: RecToMem({id: [σ]}).MyType→ InstType→ [δ]

Expression Translation

1. [b]⇒ b
2. [id]⇒ id
3. [val exp]⇒ val [exp]
4. [selfinst.id]⇒ selfinst.id
5. [superClassType(τ1,τ2).id]⇒ super.id [MyType] [InstType] (self) (selfinst)
6. [expr⇐ id]⇒ [expr]⇐ id
7. [function(id: γ):ϕ block]⇒ function(id: [γ]): [ϕ] [block]
8. [new(expr)]⇒ new [expr]
9. [class var id= exp: σ methods m= fm: τ end]
⇒ class({id= [exp]m,τ : [σ]m,τ }, {m= [fm]id,m,σ,τ : [τ]id ,m,σ,τ })

10. [class inherit exp modifying m methods m= fm: τ ′ end]
⇒ class inherit [exp] modifying m

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 287

({}, {m= function(super : {m: [τ]id ,m,σ,τ })
begin return [fm]id ,m,σ,τ ′ end

: {m: [τ]id ,m,σ,τ } → [τ ′]id ,m,σ,τ ′ })
Here τ is the type of method m in exp and σ is the type of the instance
variable id in exp

11. [exp]m,τ ⇒ function(MyType <# ObjectType(MyType, {m: [τ]})) begin return
[exp] end

12. [fm]id ,m,σ,τ ⇒ function(MyType <# ObjectType(MyType, {m : [τ]}))
begin return function(InstType <: RecToMem({id : [σ]}))
begin return function(self : MyType)
begin return function(selfinst : InstType)
begin return [fm] end end end end

Statement Translation

1. [id: = exp]⇒ id: = [exp]
2. [if exp then stm1 else stm2 end]⇒ if [exp] then [stm1] else [stm2] end

Block Translation

1. [const id1= exp1: texp1 var id2= exp2: texp2 begin stm return exp3 end]
⇒ const id1= [exp1]: [texp1] var id2: [texp2] begin id3: = [exp3]; [stm]
return [exp] end

Program Translation

1. [program id; block]⇒ program id; [block]

Type Constraints and Type Assignments Translation

1. [t <: τ]⇒ t <: [τ]
2. [t <# τ]⇒ t <# [τ]
3. [id: τ]⇒ id: [τ], id 6= super

4. [superClassType({id:σ },{m:τ }): {m: τ }]⇒ super: {m: [τ]id,m,σ,τ }
PROPOSITION E.1. If C, E ` τ1 <: τ2 then [C], [E] ` [τ1] <: [τ2]. If

C, E ` τ1 <# τ2 then [C], [E] ` [τ1] <# [τ2].

PROPOSITION E.2. Let M be an expression in the concrete syntax. If
C, E ` M : τ then [C], [E]`s [M] : [τ].

PROOF. We use induction over the height of type derivation. The interesting
cases are Variable, SupSel, Class, and Inherits.

[Variable]. The claim holds trivially as id 6= super.

[SupSel]. We have to show that

[C] ∪ {MyType <# ObjectType(MyType, {m: [τ ′])},
InstType <: RecToMem({id: [σ]})},

[E] ∪ {self: MyType, selfinst: InstType, super: {m: [τ]id,m,σ,τ }}
`s super.m [MyType] [InstType] (self) (selfinst) : [τ].

(3)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

288 • K. B. Bruce et al.

Using Variable and Proj we have:

[C] ∪ {MyType <# ObjectType(MyType, {m: [τ ′])},
InstType <: RecToMem({id: [σ]})},

[E] ∪ {self: MyType, selfinst: InstType, super: {m: [τ]id,m,σ,τ }}
`s super.m : [τ]id ,m,σ,τ .

(4)

The claim follows using the typing rules Variable, <# BdPolyFuncAppl,
<: BdPolyFuncAppl, FuncAppl (twice), and Proposition E.1 applied to the
judgment CIV ` τ ′ <: τ .

[Class]. By the induction hypothesis

[C] ∪ {MyType <# ObjectType(MyType, {m: [τ]})}, [E]`s [exp]: [σ] (5)

and

[C] ∪ {MyType <# ObjectType(MyType, {m: [τ]}),
InstType <: RecToMem({id: [σ]})},

[E] ∪ {self: MyType, selfinst: InstType}
`s [fm] : [τ].

(6)

We apply the rules Record and <# BdPolyFunction to judgment (5) and the
rules Record, Function, (twice), <: BdPolyFunction and <# BdPolyFunction,
to judgment (6). The claim follows after applying the rule Class to the resulting
judgments.

[Inherits]. By the induction hypothesis and Proposition E.1:

[C], [E]`s [exp]: ClassType(MyType, {id: [σ]}, {m: [τ]}), (7)

[C] ∪ {MyType <# ObjectType(MyType, {m: [τ ′])} ` [τ ′] <: [τ] (8)

and

[C] ∪ {MyType <# ObjectType(MyType, {m: [τ ′])},
InstType <: RecToMem({id: [σ]})},

[E] ∪ {self: MyType, selfinst: InstType, super: {m: [τ]id,m,σ,τ }}
`s [fm]: [τ ′] .

(9)

We apply the rules Record , Function (twice), <: Bd Pol y Function,
<# Bd Pol y Function, and one more time Function to judgment (9).
The claim follows after applying the rule Inherits to the resulting judgment
and judgments (7) and (8).

REFERENCES

AMADIO, R. AND CARDELLI, L. 1993. Subtyping recursive types. ACM Trans. Program. Lang. Syst.
15, 4, 575–631.

ABADI, M. AND CARDELLI, L. 1994a. A theory of primitive objects: Second-order systems. In
Proceedings of ESOP ’94, Springer-Verlag, New York, 1–24.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

PolyTOIL • 289

ABADI, M. AND CARDELLI, L. 1994b. A theory of primitive objects: Untyped and first-order systems.
In Proceedings of Theoretical Aspects of Computer Software, Springer-Verlag, New York, 296–320.

ABADI, M. AND CARDELLI, L. 1995. An imperative object calculus. In TAPSOFT ’95: Theory and
Practice of Software Development, P.D. Mosses and M. Nielsen, Eds., Lecture Notes in Computer
Science, vol. 915, Springer-Verlag, New York, 471–485.

ABADI, M. AND CARDELLI, L. 1996. A Theory of Objects. Springer-Verlag, New York.
ARNOLD, K. AND GOSLING, J. 1996. Java. Addison-Wesley, Reading MA.
AMADIO, R. M. 1991. Recursion over realizability structures. Inf. Comput. 91, 1, 55–86.
ABADI, M. AND PLOTKIN, G. D. 1990. A PER model of polymorphism and recursive types. In

Proceedings of the Symposium on Logic in Computer Science, 355–365.
BRUCE, K. B., CRABTREE, J., DIMOCK, A., MULLER, R., MURTAGH, T., AND VAN GENT, R. 1993. Safe and

decidable type checking in an object-oriented language. In Proceedings of the ACM Symposium
on Object-Oriented Programming: Systems, Languages, and Applications, 29–46.

BRUCE, K. B., CRABTREE, J., AND KANAPATHY, G. 1994. An operational semantics for TOOPLE:
A statically-typed object-oriented programming language. In S. Brookes, M. Main, A. Melton,
M. Mislove, and D. Schmidt, Eds., Mathematical Foundations of Programming Semantics,
Lecture Notes in Computer Science, vol. 802, Springer-Verlag, New York, 603–626.

BRUCE, K. B., FIECH, A., AND PETERSEN, L. 1997. Subtyping is not a good “match” for object-
oriented languages. In Proceedings of ECOOP ’97, Lecture Notes in Computer Science, vol. 1241,
Springer-Verlag, New York, 104–127.

BRACHA, G. AND GRISWOLD. D. 1993. Strongtalk: Typechecking Smalltalk in a production envi-
ronment. In Proceedings of the ACM Symposium on Object-Oriented Programming: Systems,
Languages, and Applications, 215–230.

BRUCE, K. B. AND LONGO, G. 1990. A modest model of records, inheritance and bounded
quantification. Inf. Comput. 87, 1/2, 196–240.

BRUCE, K. B. AND MITCHELL, J. C. 1992. PER models of subtyping, recursive types and higher-
order polymorphism. In Proceedings of the ACM Symposium on Principles of Programming
Languages, 316–327.

BRUCE, K. B. 1993. Safe type checking in a statically typed object-oriented programming lan-
guage. In Proceedings of ACM Symposium on Principles of Programming Languages, 285–298.

BRUCE, K. B. 1994. A paradigmatic object-oriented programming language: Design, static typing
and semantics. J. Funct. Program. 4, 2, 127–206. An earlier version of this paper appeared in
the 1993 POPL Proceedings.

BRUCE, K. B. 2002. Foundations of Object-Oriented Languages: Types and Semantics. MIT Press,
Cambridge, MA.

BRUCE, K. B. AND VAN GENT, R. 1993. TOIL: A new type-safe object-oriented imperative language.
Tech. Rep. Williams College.

CARDELLI, L. 1988. A semantics of multiple inheritance. Inf. Comput. 76, 138–164. (Special issue
devoted to the Symposium on Semantics of Data Types (Sophia-Antipolis France, 1984).

CARDONE, F. 1989. Relational semantics for recursive types and bounded quantification. In
ICALP, Lecture Notes in Computer Science, vol. 372, Springer-Verlag, New York, 164–178.

CANNING, P., COOK, W. R., HILL, W., MITCHELL, J. C., AND OLTHOFF, W. 1989. F-bounded quantification
for object-oriented programming. In Funct. Prog. Comput. Arch. 273–280.

COOK, W. R., HILL, W. L., AND CANNING, P. S. 1990. Inheritance is not subtyping. In Proceedings of
the Seventeenth ACM Symposium on Principles of Programming Languages (January), 125–135.

COOK, W. R. 1989. A proposal for making Eiffel type-safe. In Proceedings of the European
Conference on Object-Oriented Programming, 57–72.

CARDELLI, L. AND WEGNER, P. 1985. On understanding types, data abstraction, and polymorphism.
Comput. Surv. 17, 4, 471–522.

DAY, M., GRUBER, R., LISKOV, B., AND MEYERS, A. C. 1995. Subtypes vs. where clauses: Con-
straining parametric polymorphism. In Proceedings of the ACM Symposium on Object-Oriented
Programming: Systems, Languages, and Applications, 156–168.

ELLIS, M. A. AND STROUSTROP, B. 1990. The Annotated C++ Reference Manual. Addison-Wesley,
Reading, MA.

EIFRIG, J., SMITH, S., TRIFONOV, V., AND ZWARICO, A. 1994. Application of OOP type theory: State,
decidability, integration. In Proceedings of OOPSLA ’94, 16–30.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

290 • K. B. Bruce et al.

FISHER, K., HONSELL, F., AND MITCHELL, J. C. 1993. A lambda calculus of objects and method spe-
cialization. Nordic J. Comput. 1, 3–37. An earlier version of this paper appeared in Proceedings
of the Eighth IEEE Symposium on Logic in Computer Science, 1993, 26–38.

FISHER, K. AND MITCHELL, J. C. 1998. On the relationship between classes, objects, and data
abstraction. TAPOS 4, 3–32.

GAWECKI, A. AND MATTHES, F. 1996. Integrating subtyping, matching and type quantification:
A practical perspective. In Proceedings of ECOOP ’96, Lecture Notes in Computer Science,
vol. 1098, Springer-Verlag, New York, 26–47.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk–80: The Language and Its Implementation.
Addison-Wesley, Reading, MA.

GUNTER, C. A. 1992. Semantics of Programming Languages: Structures and Techniques. MIT
Press, Cambridge, MA.

IGARASHI, A., PIERCE, B., AND WADLER, P. 1999. Featherweight Java: A minimal core calculus for
Java and GJ. In OOPSLA Proceedings (October). Full version to appear in ACM Trans. Program.
Lang. Syst. 2001.

KATIYAR, D., LUCKHAM, D., AND MITCHELL, J. 1994. A type system for prototyping languages. In
Proceedings of the 21st ACM Symposium on Principles of Programming Languages, 138–150.

MEYER, B. 1992. Eiffel: The Language. Prentice-Hall, Englewood Cliffs, NJ.
MEYER, B. 1995. Static typing and other mysteries of life. Tech. Rep., Interactive Software

Engineering, Inc. Text of invited address to OOPSLA ’95.
MITCHELL, J. C. 1990. Toward a typed foundation for method specialization and inheritance.

In Proceedings of the Seventeenth ACM Symposium on Principles of Programming Languages
(January), 109–124.

MADSEN, O., MAGNUSSON, B., AND MOLLER-PEDERSEN, B. 1990. Strong typing of object-oriented
languages revisited. In OOPSLA-ECOOP ’90 Proceedings, 140–150. ACM SIGPLAN Not. 25,
10, (Oct.).

PIERCE, B. C. 1993. Mutable objects. Tech. Rep., University of Edinburgh.
PIERCE, B. C. 1994. Bounded quantification is undecidable. Inf. Comput. 112, 1, (July), 131–165.

Reprinted in Theoretical Aspects of Object-Oriented Programming, Gunter and Mitchell, Eds.,
MIT Press, Cambridge, MA, 427–459. Summary in POPL ’92.

PIERCE, B. C. AND TURNER, D. N. 1993. Object-oriented programming without recursive types. In
Proceedings of the Twentieth ACM Symposium Principles of Programming Languages, 299–312.

PIERCE, B. C. AND TURNER, D. N. 1994. Simple type-theoretic foundations for object-oriented
programming. J. Funct. Program. 4, 207–247. An earlier version appeared in Proceedings of of
POPL ’93, 299–312.

REYNOLDS, J. C. 1980. Using category theory to design implicit conversions and generic opera-
tors. In Semantics-Directed Compiler Generation, N. D. Jones, Ed., Lecture Notes in Computer
Science, vol. 94, Springer-Verlag, New York, 211–2580.

SCHAFFERT, C., COOPER, T., BULLIS, B., KILIAN, M., AND WILPOLT, C. 1986. An introduction to Trellis/
Owl. In OOPSLA ’86 Proceedings, 9–16. ACM SIGPLAN Not. 21, 11, (Nov.).

TESLER, L. 1985. Object Pascal report. Tech. Rep. 1, Apple Computer.
VAN GENT, R. 1993. TOIL: An imperative type-safe object-oriented language. Williams College

Senior Honors Thesis.

Received July 2000; revised December 2001; accepted August 2002

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 2, March 2003.

