An anomaly of subtype relations at component
refinement, and a generative solution in C++

Zoltan Porkolab and Istvan Zolyomi

Department of Programming Languages and Compilers, E6tvos Lorand University
Pazmény Péter sétany 1/C H-1117 Budapest, Hungary
{gsd, scamel}@elte.hu

Abstract. Separation of concerns and collaboration based design is a
good design choice: it results an easily maintainable and readable code.
After separating orthogonal functionalities we assemble the required con-
cerns as needed. However in real life, components could be used only
after appropriate refinement steps, thus orthogonal concerns form in-
dependent specialization hierarchies. Such hierarchies provide individual
subtype relations. The specific solution for a particular task can be finally
produced by composing a set of classes from these refinements. However,
a subtype anomaly occurs between collaborating groups having different
number of participating classes from different refinement stages. In this
article we walk around this anomaly we called chevron-shape inheritance
and present a framework to handle collaborating groups of classes using
template metaprogramming based on standard C++ features.

1 Introduction

The creation of large scale software systems is still a critical challange of software
engineering. Several design principles exist to keep the complexity of large sys-
tems manageable. Different methodologies are used to divide the problem into
smaller orthogonal parts that can be planned, implemented and tested separately
with moderate complexity. In a fortunate case such parts are already exist in
some foundation library, otherwise they can be produced by reasonable efforts.
This separation of concerns is widely discussed in [17] and [20]. In object-oriented
systems these concerns are mostly implemented in separate classes.

Having premanufactured components we have several methodologies to as-
semble a full system from the required code parts. This so-called collaboration
based design is supported by aspect oriented programming [15], composition fil-
ters [11], subject oriented programming [19] [21] and HyperJ [18]. Besides, the
assembly can be naturally expressed using multiple inheritance by deriving from
all required components in languages supporting this feature such as C++. This
mizin-based technique is highly attractive for implementing collaboration-based
design [6]. Whichever approach we choose, the basic idea is to create a union
of the interfaces of the collaborating classes. These classes represent orthogonal
concepts thus the result is a disjunction of their functionalities.



However, in real life it is hard to find a component that represents the re-
quired concept ezactly. In most cases we have to customize the components to
fit the needs of the current task. Specializations for every separate concern are
made independently which leads to separated specialization hierarchies, each
representing refinement steps of an individual concept. The specific solution for
a particular task can be finally produced by assembling specialized concepts
from appropriate levels of different hierarchies. In object-oriented languages we
mostly represent our concepts as classes. Specializations are regurarly expressed
using inheritance, hence we gain a subtype relationship between the refined and
the original component.

The problem appears when we try to refer to a subset of supertypes of the
collaborating classes. It is a desired feature because a client code should be
separated from the knowledge of the exact type of the (refined) components. But
the collaboration of original components are not a base class of the collaboration
of refined components. Because automatic conversion is out of order, objects of
the collaboration of original components cannot be used in place of objects of
collaboration of refined components which is against the Liskov Substitution
Principle [22]. Similarly, clients are unable to utilize dynamic binding calling
functions of derived objects in a type safe way.

2 Importance of the problem

Programmers may argue that such side effects may ever appear in practice. In
this section we intend to convince the reader showing real-life examples.

We start with one from the C++ Standard Library of C++: in figure 1 you
can see the stream class hierarchy of the standard library?.

ostream

ifstream ofstream
fstream

Fig. 1. I/0 library according to the C++ standard

Classes istream and ostream are representing input and output streams as
orthogonal concerns. (There is a common base class ios for both classes holding

! We omit the fact that all the followng classes are templates by the standard, because
this does not affect our problem.



some general stream functionality.) Class iostream is created using multiple
inheritance unifies input and output functionalities representing streams that
can be both read and written?. The library contains two refinements of both
input and output stream concepts. Streams opened over certain physical devices
belong to classes ifstream or of stream as refinements of istream and ostream
respectively®. These specializations are implemented using inheritance. Class
fstream (and stringstream also) inherits from iostream and represents file
streams for both input and output operations.

Surprisingly, this construction causes some unexpected results. fstream is
clearly a subtype of both ifstream and ofstream. The inheritance hieararchy
described above does not express this, hence there is no conversion from fstream
to neither istream nor ostream. Clients handling input files are not able to use
objects from fstream as an instance of ifstream, they are enforced to use
istream as a more general interface losing file specific information. After taking
a look at classes iostream and istream this fact may be an astonishing fact.

The other example is from the programming language Eiffel [10]. The kernel
library of Eiffel contains several abstract classes like NUMERIC for arithmetics,
COMPARABLE for sorting, HASHABLE for associative containers, etc. These classes
are practical to have because in Eiffel we can require a template parameter to be
a subclass of such an "interface". These classes can be combined as needed using
multiple inheritance, hence we can derive a NUMERIC_COMPARABLE_HASHABLE or
a NUMERIC_COMPARABLE interface directly from the bases. Again, the problem
appears when we try to use an object of the first class with a generic algorithm
requiring the latter type: no subtype relation is realized, we have to resolve it
by hand creating funtions for conversion.

3 The chevron-shape anomaly

In this section we formulate the problem showing a general description and sug-
gest a name for the anomaly. It appears in strongly typed object-oriented lan-
guages which base their subtype relation on inheritance; consequently it appears
in all widely used object-oriented languages, such as Java, C++-, C#, Eiffel, Ob-
ject Pascal, etc. The problem is closely related to class refinement using multiple
inheritance*.

Assume we have a set of independent base classes implementing orthogonal
concerns. These classes are to be refined stepwise, thus each concept forms a
separate inheritance hierarchy. The solution for a specific user requirement can

be constructed as a group of refined concerns. In the same case, we should be able

2 This results in a known anomaly called diamond-shape inheritance. In this case it is
resolved using wvirtual inheritance in classes istream and ostream.

3 Similar specializations exist for streams stored in a memory buffer (e.g.
istringstream and ostringstream).

4 Note that some languages (e.g. Java) do not support multiple inheritance directly,
but are able to simulate it (e.g. using interfaces). The problem exists in these cases,
too.



to use any subset of classes from these hierarchies as interfaces to the previously
constructed group. Therefore subtype relation should stand between any of these
groups irrespectively of the number and refinement level of participant concern
classes. The subtype relation should be closed under union (disjunction), but
this is not fulfilled in object-oriented languages. Thus we have to decide: if we
derive the refined collaboration from the original collaboration class we lose the
subtype relationship with the refined bases; otherwise (deriving from the refined
bases) we lose the subtype relationship with the original collaboration. In most
design cases the latter situation is preferred. In figure 2 the general structure of
the anomaly can be seen according to the two mentioned cases respectively. In
the picture missing subtype relations are marked with dashed lines.

Conceptl Concept2 Conceptl Concept2
Collaboration Collaboration
r- A
1
1
1
1
Refinementl Refinement2 Refinementl I Refinement2

1
A SN PPiad I
Ss o - 1
S~ ~ - - !
~ - :

RefinedCollaboration RefinedCollaboration

Fig. 2. Chevron-shape inheritance

We gave the name chevron-shape inheritance to this anomaly®. It is easy to
understand our choice taking a look at figure 2.

In addition, having several concept hierarchies we should be able to express
subtype relationship between collaborating groups having different number of
classes of different refinement stages.

4 CSet

Besides its object-oriented tools the C++ language also has a rich feature set
for supporting generative programming with templates. Theoretically template
metaprogramming in C++ is a Turing complete language itself, therefore any
algorithm can be expressed as a metaprogram® (see [7]). This "language" is
"executed" in compilation time: the result is a C++ program which is still
about to be checked by the language strong type system.

 With this name we also intended to refer to diamond-shape inheritance.
5 Practically compilers have limitations in resources (e.g. a maximal depth of recursion
during template instantiation).



Template metaprogramming features discussed above make us able to solve
the chevron-shape anomaly. To achieve this goal we have to simulate a subtype
relationship between adequate sets of collaborating classes: based on the pos-
sibilities of template metaprogramming we implement conversions between the
sets’. Presenting the technical implementation details is out of the scope of this
paper. The main issue in CSet is to build the needed class hierarchy, templated
conversion operators and smart pointers automatically in compilation time.

5 Summary and related works

The subtyping mechanism of current object oriented languages is not flexible
enough to express required subtype relationships arising at implementation of
collaboration based designs. We described an anomaly called chevron-shape in-
heritance which arises assembling sets of collaborating concerns created in step-
wise refinement of concepts. We introduced a framework called CSet based on
C++ template metaprogramming to extend the possibilities of subtyping mecha-
nism between sets of collaborations. CSets make the subtype relation disjunctive
with respect to multiple inheritance. It supports coercion polymorphism between
appropriate collaborating groups or inclusion polymorphism allowing dynamic
binding of methods with smart pointers. The framework is strictly based on stan-
dard C++ features, therefore neither language extensions nor additional tools
are required.

Another candidate for solution can be the signature facility of C++ from
Gerald Baumgartner [4]. Signatures provide a facility similar to interfaces in
Java, but in a non-intrusive way: if a class intends to implement a signature,
it does not have to define it explicitly to do so. Signatures are non-standard
language extensions and are implemented only in g++ compilers, thus their
usability is strictly limited.

As an alternative solution Structural subtyping [13] provides an excellent
possibility for solution: languages supporting this feature do not suffer from
our anomaly. Unfortunately no widely used object-oriented language provides
structural subtyping.

References

1. Istvan Zolyomi, Zoltan Porkolab, Taméas Kozsik: An extension to the subtype re-
lationship in C++. GPCE 2003, LNCS 2830, pp. 209 - 227, 2003 (Springer-Verlag
Berlin Heidelberg)

2. Andrei Alexandrescu: Modern C+-+ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

3. David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The Complete Guide.
Addison-Wesley (2003)

7 we call these sets CSets where C can be pronounced as any of class, concern, collab-

oration, chevron, etc as conceptually needed.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Gerald Baumgartner, Vincent F. Russo: Implementing Signatures for C++ ACM
Transactions on Programming Languages and Systems (TOPLAS) Vol. 19 Issue 1.
1997. pp. 153-187.

Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4,
May 1995, pp. 36-43.

Yannis Smaragdakis, Don Batory: Mixin-Based Programming in C++. In proceed-
ings of Net.Object Days 2000 pp. 464-478

Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods,
Tools and Applications. Addison-Wesley (2000)

Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-
Wesley (2000)

. Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley (1994)
10.
11.

Bertrand Meyer: Eiffel: The Language. Prentice Hall (1991)

Lodewijk Bergmans, Mehmet Aksit: Composing Crosscutting Concerns Using
Composition Filters. Communications of the ACM, Vol. 44, No. 10, pp. 51-57,
October 2001.

Kim B. Bruce: Foundations of Object-Oriented Languages. The MIT Press, Cam-
bridge, Massachusetts (2002)

Luca Cardelli: Structural Subtyping and the Notion of Power Type. Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, California, January 1988. pp. 70-79.

Erik Ernst: Family Polymorphism. in Proceedings ECOOP 2001, Budapest, Hun-
gary, Springer-Verlag LNCS 2072, 2001 pp. 303-326,

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, John Irwin: Aspect-Oriented Programming. Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241, June 1997.

Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki: A Solution to the
Constructor-Problem of Mixin-Based Programming in C+-+. Presented at the
GCSE2000 Workshop on C++ Template Programming.

Harold Ossher, Peri Tarr: Multi-Dimensional Separation of Concerns and The Hy-
perspace Approach. IBM Research Report 21452, April, 1999. IBM T.J. Watson
Research Center. http://www.research.ibm.com/hyperspace/Papers/tr21452.ps
Harold Ossher, Peri Tarr: Hiper/J. Multidemensional Separation of Concerns for
Java. International Conference on Software Engineering. ACM pp. 734-737. 2001
William Harrison, Harold Ossher: Subject-oriented programming: a critique of pure
objects Proceedings of 8th OOPSLA 1993, Washington D.C., USA. pp. 411-428.
1993

Don Bathory, Jia Liu, Jacob Neal Sarvela: Refinements and multi-dimensional
separation of concerns Proceedings of the 9th European software engineering con-
ference held jointly with 10th ACM SIGSOFT international symposium on Foun-
dations of software engineering. helsinki, Finland, 2003.

Subject Oriented Programming. http://www.research.ibm.com/sop

Barbara Liskov: Data Abstraction and Hierarchy SIGPLAN Notices. 23(5), May
1988

Jonathan E. Shopiro: An Example of Multiple Inheritance in C++: a Model of the
Tostream Library. ACM SIGPLAN Notices, December, 1989



