
An Extension to the Subtype Relationship
in C++ Implemented with Template

Metaprogramming

István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

Department of Computer Science, Eötvös Loránd University
Pázmány Péter sétány 1/D H-1117 Budapest, Hungary

{scamel,gsd,kto}@elte.hu

Abstract. Families of independent classes, where each class represents
a separate, orthogonal concern are highly attractive for implementing
collaboration-based design. However, required subtype relationship be-
tween such families cannot be expressed in many programming lan-
guages. This paper presents a framework to handle collaborating groups
of classes using template metaprogramming based on standard C++ fea-
tures in the style of Loki::Typelist. Our solution provides tailor-made
implicit conversion rules between appropriate groups, inclusion polymor-
phism and a tool for dynamic binding.

1 Introduction

In this paper an extension to the subtyping mechanism of C++ is presented.
Subtyping based on inheritance (subclassing) is known to cause many problems.
(See e.g. Bruce in [3] for an extensive discussion of such flexibility and type-safety
problems). In spite of these problems, most popular object-oriented languages,
such as C++, Java, C# and Eiffel use subtyping provided by inheritance. Our
extension to subtyping in C++ will not be an exception, as it will be based on
multiple inheritance.

Subtyping is explicit in the aforementioned languages: the subtype relation-
ship must be explicitly indicated in the type definitions. For obvious reasons, the
subtype relation is made transitive, by defining it as the reflexive and transitive
closure of the declared subclassing properties appearing in the type definitions.
Multiple inheritance with a disjunctive subtype relation is highly attractive for
implementing collaboration-based designs [12]. Each particular class from a fam-
ily of collaborating classes represents a separate, orthogonal concern. In the same
time, the client code must be separated from the knowledge about the exact
structure of the family of classes. This client should be able to refer to a subset
of supertypes of the collaborating classes.

The subtype relation in C++ and similar languages does not have language
support for disjunctivity with respect to multiple inheritance. To clarify disjunc-
tivity look at the classic example given by Stroustrup in [14]. It describes two
orthogonal concerns. One is a hierarchy of vehicles with the base class Vehicle

F. Pfenning and Y. Smaragdakis (Eds.): GPCE 2003, LNCS 2830, pp. 209–227, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

210 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

and derived classes, e.g. Car and Truck (see figure 1). Here a class like Car is
a subtype of Vehicle; the functionality of Vehicle is a subset of Car’s. The
other concern represents the aspect of an emergency vehicle which e.g. has pri-
ority in intersections and is under radio control of a dispatcher. This concern is
implemented in class Emergency. Cars like a policecar or trucks like a fireengine
should have the functionality provided by class Emergency, therefore classes
PoliceCar and FireEngine should be subtypes of class Emergency and either
Car and Truck respectively. The functionality of PoliceCar and FireEngine
is the union of the functionalities of the collaborating classes. The subset rela-
tion between functionalities should be closed under union (disjunction). Assume
we have a client code handling generic emergency vehicles as a collaboration
of classes Vehicle and Emergency. The class EmergencyVehicle should be a
supertype for classes PoliceCar and FireEngine, but implementing it using
multiple inheritance we lose the language support for the subtype relationship
between EmergencyVehicle and PoliceCar (marked with dashed line on figure
1), e.g. no automatic conversion is possible.

Vehicle Emergency

Car Truck

PoliceCar
FireEngine

EmergencyVehicle

Fig. 1. Class hierarchy for the Vehicle example.

This paper presents a framework that supports a natural way to handle
collaborating groups of classes. The framework consists of templates that provide
tailor-made implicit conversions between two appropriate groups of collaborating
classes in the spirit of our previous example: the class PoliceCar defined as
FAMILY 2(Car, Emergency) is automatically converted toFAMILY 2(Emergency,
Vehicle). (Note that the order of the classes in the the groups is irrelevant and
we could also apply a hierarchy of emergency levels derived from Emergency.)
As a part of the increased support for inclusion polymorphism, our framework
also provides a tool for dynamic binding of method calls.

2 Applicability

In this section we present a few examples to show our motivation and underline
the advantages of our approach. An important advantage of this technique is
that we can create our software components with less unnecessary dependencies
so we can increase the maintainability of C++ code.

An Extension to the Subtype Relationship in C++ 211

In this paper we will follow through a single example originally introduced
by Harold Ossher in [15]. We write an application manipulating expressions con-
sisting of literals and operators. Different manipulations are orthogonal concerns
like evaluating, displaying and syntax-checking. We can express Operator as a
collaboration of classes OpDisplay, OpEval and OpCheck (see figure 2). More-
over we can express Plus as the collaboration of PlusDisplay, PlusEval and
PlusCheck.

typedef FAMILY_3(OpDisplay, OpEval, OpCheck) Operator;
typedef FAMILY_3(PlusDisplay, PlusEval, PlusCheck) Plus;

Collaborating classes are themselves in inheritance (and subtype) relation:
PlusDisplay is subtype of OpDisplay, PlusEval is subtype of OpEval, etc.
We would like to have the subtype relation between the collaborating Plus and
Operator classes and this is exactly what our FAMILY construct can provide.
Remember that if Plus and Operator were created by ordinary multiple inheri-
tance, then Plus would not be a subtype of Operator. This is the example we
will refer through the article.

OpEval OpCheck OpDisplay

PlusEval PlusCheck PlusDisplay
Operator

Plus

Fig. 2. Class hierarchy for the Operator example.

The next example is related to Grid-computing. Assume that we have Com-
pute Service nodes in a grid offering different computational resources. When
a client is started, a Resource Broker will find a Compute Service node where
it can be executed. The requirements of the clients can be specified with types
(interfaces). A client can run on a node if the required type is a supertype of the
offered type. A set of building blocks for constructing the required resources can
be BasicTrigonometry (supporting sin, cos, tan), AdvancedTrigonometry (it is
a subtype of BasicTrigonometry with sh, ch, arcsin, cotan), ComplexNumbers,
ComplexTrigonometry, (child of AdvancedTrigonometry and ComplexNumbers),
Derivation, Integration and DifferentialEquations (subtype of
Derivation and Integration).

A client can specify its requirements as FAMILY 2(AdvancedTrigonometry,
Derivation). The Resource Broker can choose a node offering either FAMILY 2(

212 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

AdvancedTrigonometry, Derivation) or FAMILY 3(ComplexTrigonometry,
Derivation, Integration) or any similar.

To achieve similar flexibility without our framework one should define all
possible combinations of the building blocks declaring the appropriate subtype
relationships. This would be very cumbersome to write and impossible to main-
tain, especially if new computational libraries were to be introduced.

3 Class Hierarchy

A typical group of collaborating classes involves classes usually unrelated to each
other. When designing the class hierarchy, we cannot find a common superclass.
What is more, introducing such an artificial base class would be misleading both
conceptually and technically (it would allow implicit conversions not deducible
from the conceptual model). Therefore we did not choose an object-oriented but
a generative method to express the required relationships.

The fundamental element in the implementation is structural conversion be-
tween groups of collaborating classes. Implementing structural conversion we
have to provide a structure holding our collaborating classes together. This may
not seem a problem at all because C++ has multiple inheritance, so any com-
bination of classes can be created. However, for implementing the appropriate
conversions, we also need the exact map of the inheritance hierarchy of the par-
ticipating classes. Thus we have to implement a framework that provides all
required inheritance information.

A natural way to implement such a framework is to assemble the required
structure of classes in a controlled way. Thinking in generative programming
terms, we can use template parameters to specify the components of the structure
to be built. We want a template class that inherits from all parameter types.
Using an ordinary Mixin class a naive implementation can be given:

template <class Left, class Middle, class Right>
class Family3 : public Left, public Middle, public Right {};

This example has an important limitation: the number of components is
“hardwired”. Extending this implementation philosophy our template should
repeatedly be rewritten to support all possible numbers of collaborating classes.

An arbitrary long list of types can be specified using a single template param-
eter. Introduced by Alexandrescu1 in [1] a template framework was designed to
handle this kind of type lists. We could have written our own template classes,
but why to reinvent the wheel? Loki::Typelist is a useful, versatile tool at
hand and we will rely on it when building our structures.

1 Though similar typelists were also discovered by Jaaki Järvi and they are also
introduced in [6] both before [1], it was Alexandrescu who provided a comprehensive
library and framework with it.

An Extension to the Subtype Relationship in C++ 213

3.1 Overview of Loki::Typelist

The only role of this class is to hold compile-time information as a list of types
in a single class. Its definition is very simple:

template <class T, class U>
struct Typelist {

typedef T Head;
typedef U Tail;

};

Basically this template is similar to a trait in that it contains static type
information. An example of using this template can be given as:

template <class TypeInfo> class RefCountPtr {
typedef typename TypeInfo::Head counterType;
typedef typename TypeInfo::Tail pointeeType;
...

};

typedef Typelist<unsigned int, string> MyPtrTraits;
typedef RefCountPtr<MyPtrTraits> MyPtr;

One may think that Typelist can hold information of only two types. How-
ever, using a recursive approach, longer lists can also be written.

typedef Typelist< char, Typelist<signed char, unsigned char> >
CharList;

Obviously, the head of the list can be simply referenced as CharList::Head
when using such a list. To refer to the remaining types a longer expression is
needed, but specifying classes like CharList::Tail::Head is almost as undesired
as hardwiring the number of parameters. Fortunately it is possible to provide a
better way.

By convention, a Typelist must end with the special type NullType. For
compile-time algorithms it serves as \0 does for C-strings: it marks the end of
a list as an extremal element. Thus indexing and iterating over the list can be
implemented without serious restrictions.

Because recursion makes defining a long list really annoying and error-prone,
macros are written in Loki to ease this problem. Though we have to specify the
exact length of the list and the types to use them, recursion-handling and adding
NullType are not needed explicitly anymore:

#define TYPELIST_1(T1) Typelist<T1,NullType>
#define TYPELIST_2(T1, T2) Typelist<T1, TYPELIST_1(T2) >
#define TYPELIST_3(T1, T2, T3) Typelist<T1, TYPELIST_2(T2, T3) >
...

typedef TYPELIST_3(char, signed char, unsigned char) CharList;

214 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

3.2 Recursive Inheritance

Loki::Typelist has several recursive compile-time algorithms: random access,
append, removal of duplicates, etc. All of them are based on partial template
specialization (see [14] and [1]) utilizing NullType at the end of the list.

Our solution will be very similar to them from this point of view2. Now
Family may have only one parameter type containing all required types to be
assembled to a structure:

// --- Forward declaration
template <class List> class Family;

// --- Partial specialization for general lists
template <class Head, class Tail>
class Family< Typelist<Head,Tail> > :

public Head, public Family<Tail>
{};

// --- Partial specialization for lists of one element
template <class Head>
class Family< Typelist<Head,NullType> > :

public Head
{};

The forward declaration is only for safety purposes, there is no implementa-
tion for it. The two partial specializations have their own implementations, thus
ensuring that a compile-time error will occur if the template is instantiated with
any type other than a Typelist.

The first implementation inherits from both Head and Family<Tail>, but —
because it is specialized for lists of only one element — no Tail remains for the
second, therefore it inherits only from Head. A sample instance and an according
class hierarchy may be seen below and in figure 3.

typedef Family< TYPELIST_3(OpDisplay, OpEval, OpCheck) Operator;

4 Instantiating Objects

After creating the class hierarchy we construct instances of classes. We need a
constructor for our structure. As a consequence of using Typelist and recursive
inheritance, during our compile time recursions we know nothing about the types
in the list: we have only the atomic type Head and the remaining list Tail of any
2 We could also use classes introduced in [1] like Loki::GenScatterHierarchy or
Loki::GenLinearHierarchy to build our hierarchies, but they are needlessly complex
for us. We do not need most of their functionalities so we would rather write a similar,
but very simple class from scratch.

An Extension to the Subtype Relationship in C++ 215

OpCheck

Family< Typelist<OpCheck,Nulltype> >

OpEval

Family< TYPELIST_2(OpEval,OpCheck) >

OpDisplay

Family< TYPELIST_3(OpDisplay,OpCheck,OpEval) >

Fig. 3. A sample hierarchy of the Family template.

length. Without knowing all list elements, conventional constructor techniques
cannot be used.

Our only possibility is continuing with the recursive technique by demand-
ing two constructor parameters of types Head and Family<Tail>. Hereby our
structure still remains quite simple as its base classes can be directly set using
member initializer lists. (For a solution of the mixin constructor problem see
[7]). Reasonably, we also want a copy constructor for easy initialization:

template <class Head, class Tail>
class Family< Typelist<Head,Tail> > :

public Head, public Family<Tail>
{
public:

// --- Type name shortcuts
typedef Family<Tail> Rest;
typedef Family< Typelist<Head,Tail> > MyType;

// --- Copy constructor
Family(const MyType& mt) : Head(mt), Rest(mt) {}

// --- "Recursive" constructor
Family(const Head& head, const Rest& rest) :

Head(head), Rest(rest) {}
};

template <class Head>
class Family< Typelist<Head,NullType> > :

public Head
{
public:

// --- All in one constructor
Family(const Head& head) : Head(head) {}

};

216 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

After defining the required constructors we are able to create our first col-
laboration group.

typedef Family< TYPELIST_2(PlusEval, PlusCheck) > PlusCalc;
typedef Family< TYPELIST_3(PlusDisplay, PlusEval, PlusCheck) > Plus;

// --- Create a 3-in-1 object
PlusEval add; PlusCheck checkParams; PlusDisplay show("+");
PlusCalc calculate(add, checkParams);
Plus sum(show, calculate);

Unfortunately a temporary object sum has to be used for passing a sec-
ond parameter to the constructor. For a longer list more temporary objects are
needed and longer member initialization is done. Though one could write this in
a shorter form without variables3, it is still not an appropriate solution:

Plus sum(PlusDisplay("+"), PlusCalc(PlusEval(), PlusCheck()));

Even for this form of instantiation we have to embed constructor calls. It
is very similar to the typelist definition problem, where macros were written to
linearize the recursion. We can generate macros for our classes and use them in
almost the same form as TYPELIST X:

// --- Sample macro definitions for a family of 3 classes
#define FAMILY_3(T1,T2,T3) Family< TYPELIST_3(T1,T2,T3) >

#define FAMILYVAR_3(name, T1, P1, T2, P2, T3, P3) \
FAMILY_3(T1,T2,T3) name (P1, FAMILY_2(T2,T3) (P2,P3))

// --- Using a default constructor
FAMILY_3(PlusDisplay, PlusEval, PlusCheck) sum;

// --- Using object for initialization
FAMILYVAR_3(sum, PlusDisplay, PlusDisplay("+"),

PlusEval, PlusEval(), PlusCheck, PlusCheck());

In the last example above sum stands for the name of the variable followed by
the parameter types and the actual parameters. Though a default constructor
was still not introduced for the Family template, it can be easily implemented
for both specializations. We need only two lines of code to be added next to the
copy constructors:

Family(): Head(), Rest() {} //for general lists
Family(): Head() {} //for a list of one element

3 This form of constructor calls could be parsed as a function declaration with pointer-
to-function type parameters, see [9].

An Extension to the Subtype Relationship in C++ 217

5 Structural Conversions

We have already got class families, but they are still not related to each other. To
provide the required subtype relations we need a structural conversion between
adequate groups of classes. Unlike the creation of the hierarchy and the objects,
we have lots of different ways to implement the conversion.

5.1 Do It in the Naive Way

At first glance the most simple way is a conversion function iterating over all
types in the list and convert them to their appropriate base types. Following
our compile-time recursion technique, this can be made in two steps: recursively
converting the tail of the list first and simply converting the head type at last.
We can make use of partial template specialization to implement this function.
Because partial template specialization is allowed only for classes, we introduce
an auxiliary Converter class. We do not want to create any instances of the
class Converter, hence our function convert will be static:

// --- Forward declaration
template <class ToList, class FromList> struct Converter;

// --- Partial specialization for general lists
template <class ToHead, class FromHead,

class ToTail, class FromTail>
struct Converter< Typelist<ToHead,ToTail>,

Typelist<FromHead,FromTail> >
{

typedef Family< Typelist<ToHead,ToTail> > ToType;
typedef Family< Typelist<FromHead,FromTail> > FromType;

static ToType convert(const FromType& from)
{

// --- Recursion to the rest of list
Family<ToTail> toTail =

Converter<ToTail,FromTail>::convert(from);

// --- Conversion FromHead -> ToHead
return ToType(from, toTail);

}
};

// --- Partial specialization for lists with one element
template <class To, class From>
struct Converter< Typelist<To,NullType>,

Typelist<From,NullType> >

218 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

{
// --- Simple conversion From -> To
static To convert(const From& f) {

return f;
}

};

// --- An example using the Converter class
typedef TYPELIST_3(OpEval, OpCheck, OpDisplay) ToList;
typedef TYPELIST_3(PlusEval, PlusCheck, PlusDisplay) FromList;

Family<FromList> sum;

Family<ToList> expr = Converter<ToList,FromList>::convert(sum);

This conversion became quite complex, but would be worth the hard work if it
was all we need. Unfortunately it is far from that for its highly limited usability.
The solution above supports only lists of classes of the same length and the
same ancestor-descendent order. When adding a new element to FromList or
when changing the order of elements in either lists, an error will occur during
compilation.

There are still other problems with this construction. Firstly, there is a se-
rious hidden inefficiency in the conversion. The construction of a Family object
requires time linear in the length of the list of types. This is optimal because
each type in the list has to be initialized. Inefficiency comes in sight during con-
version: in every call of convert() an object is instantiated to return the result
of the actual conversion step, which has a linear cost itself. Multiplied with the
number of function calls, the total conversion cost becomes O(n2).

Secondly, there is still an explicit call of a function needed for the conver-
sion. We intend our framework to work completely transparent (i.e. structural
conversions should work without explicit function calls).

5.2 Template Constructors

All problems above can be solved by using a different approach. Firstly, we do
not assume that the type we want to convert is a Family which is accessible by
iterating over only ToList and ignoring FromList. Consequently, the object to
be converted can be any user type created by multiple inheritance.

To avoid explicit function calls, we can use either a simple conversion operator
or a constructor. Neither of them is suited for recursive solutions. Difficulties
arise at generality, because not a single specific conversion is needed: we want all
possible conversions to be supported. Both functions have to be implemented as
members, so our Converter is of no use anymore, we must change to template
functions.

To solve the cost problem, we need a radical change in our approach, because
a conversion function returning a constructed result by value is not acceptable.

An Extension to the Subtype Relationship in C++ 219

We can avoid copying the temporary results by initializing the adequate part of
the resulting structure directly within the converted object.

We need a neat trick to solve the united needs of the two approaches above.
Using template constructors may sound a little weird, but constructors are func-
tions, thus they provide a possible solution. Even the essence of our previous
conversion may remain the same, only its frame changes. Consider the following
code:

template <class Head, class Tail>
struct Family< Typelist<Head,Tail> > :

public Head, public Family<Tail>
{

typedef Family<Tail> Rest;
typedef Family< Typelist<Head,Tail> > MyType;

// --- Good old constructor
Family(const Head& head, const Rest& rest) :

Head(head), Rest(rest) {}

// --- Conversion and copy constructor
template <class FromType>
Family(const FromType& from) : Head(from), Rest(from) {}

};

template <class Head>
struct Family< Typelist<Head,NullType> > : public Head
{

typedef Family< Typelist<Head,NullType> > MyType;

// --- All-in-one constructor
Family(const Head& head) : Head(head) {}

};

This code is even more simple. It is not obvious to see, but it follows the
same conversion steps using the member initialization lists.

To examine this code, see the following example:

class Plus: public PlusEval,public PlusCheck,public PlusDisplay{};
Plus sum;
FAMILY_2(OpEval, OpCheck) calculate = sum;

As explained above, the converted object does not have to be an instance
of Family, a hand made type will do. We can see that no temporary objects
were used. The time cost of the conversion is linear since we iterate over the list
elements only once.

The conversion is implicit, we did not use any explicit function calls. Since
it is implemented as a constructor call, the compiler will silently do these kinds
of conversions whenever needed, which greatly improves the ease of use.

220 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

Still one additional feature for our class may be desirable: an operator= to
copy our objects. It can be easily implemented following our previous recursive
techniques, similarly to our template constructor:

// --- Implementation for general list
template <class FromType>
MyType& operator = (const FromType& from) {

Head::operator= (from);

// --- recursive call
Rest::operator= (from);
return *this;

}

// --- Implementation for lists of one element
MyType& operator = (const Head& from) {

Head::operator= (from);
return *this;

}

// --- Example using our previous object
FAMILY_3(MinusEval, MinusCheck, MinusDisplay) minus;
calculate = minus;

6 Dynamic Binding

Now conversion works fine, providing coercion polymorphism for our class fam-
ilies. Like all default conversions in C++, our conversion is done by value, not
by reference. We would also like to use dynamic binding, so we will follow the
C++ way: build our smart pointer and reference classes to support it.

6.1 Smart Pointers

How can we write a smart pointer? The usual way is to have a referring member
(mostly pointer but it also can be a reference) and overloaded operators like
operator-> which do some additional work (e.g. reference counting).

The natural extension of our previous recursive technique would produce an
inheritance hierarchy using referring types for bases. We cannot inherit from
either pointers or references so a pointer data member for each type in the list
will be used instead. We build the following structure:

template <class Head, class Tail>
class FamilyPtr< Typelist<Head,Tail> > : public FamilyPtr<Tail>
{

Head* head;
...

};

An Extension to the Subtype Relationship in C++ 221

template <class Head>
class FamilyPtr< Typelist<Head,NullType> >
{

Head* head;
...

};

Thus the structure becomes linear. An example (for the same list of types as
shown in figure 3) can be seen in figure 4.

FamilyPtr< TYPELIST_1(OpCheck) >
 OpCheck* head

FamilyPtr< TYPELIST_2(OpEval,OpCheck) >
 OpEval* head

FamilyPtr< TYPELIST_3(OpDisplay,OpEval,OpCheck) >
 OpDisplay* head

Fig. 4. A sample hierarchy of the FamilyPtr template resulting from the same example
as that of figure 3.

FAMILYPTR_2(OpDisplay,OpEval)
 head: OpDisplay*
 head: OpEval*

PlusDisplay PlusCheck PlusEval

points to
points to

Fig. 5. A sample initialization of pointer members in FamilyPtr.

When constructing a FamilyPtr instance, every pointer member is set to the
adequate part of the referred composite object. (See figure 5).

// --- FamilyPtr general implementation for Typelists
template <class Head, class Tail>
class FamilyPtr< Typelist<Head,Tail> > : public FamilyPtr<Tail>
{

Head* head;
public:

typedef FamilyPtr<Tail> Rest;
typedef FamilyPtr< Typelist<Head,Tail> > MyType;

FamilyPtr() : Rest(), head() {}

222 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

// --- Conversion and copy constructor
template <class FromType>
FamilyPtr(FromType& from) : Rest(from), head(&from) {}

// --- Simple cast operators
operator Head& () const { return *head; }
operator Head* () const { return head; }

};

template <class Head>
class FamilyPtr< Typelist<Head,NullType> >
{

Head* head;

public:
typedef FamilyPtr< Typelist<Head,NullType> > MyType;

// --- Simple default and copy constructors
FamilyPtr() : head() {}
FamilyPtr(Head& from) : head(&from) {}

// --- Simple cast operators
operator Head& () const { return *head; }
operator Head* () const { return head; }

};

Most of this code should not be a surprise by now, only the cast operators are
really new. Because Head is not an ancestor any more, we need a workaround
for keeping the possibility of conversion to Head. Overloading operator-> to
return pointer head will not do what we need: always the operator-> of the
most derived type would be called because of hiding, no better match would be
searched for in base types.

Cast operators can provide a solution for this problem. Instead of overloading
operators like operator->, we can directly convert our object to a pointer. Un-
fortunately this solution also has a drawback. By language definition automatic
conversions are disabled on the left side of operators like operator-> , so an
explicit cast is needed to the required type. See the following example:

FAMILY_3(PlusDisplay, PlusEval, PlusCheck) sum;
FAMILYPTR_3(OpDisplay, OpEval, OpCheck) exprPtr(sum);

// --- Function call with explicit cast
static_cast<OpDisplay*>(exprPtr)->show();

// --- In longer form with implicit cast
OpDisplay *displayPtr = exprPtr;
displayPtr->show();

An Extension to the Subtype Relationship in C++ 223

This explicit cast can be uncomfortable, but it also can be useful for removing
the possibility of ambiguous expressions. It is still not an advantage though, but
we could find no better way so we will have to live together with this limitation.

We should also implement a copy operator for our pointers which will be
quite similar to the one of Family. A surprising explicit cast is needed though,
because a conversion T → U with the cast operators of T does not imply that T*
→ U* is also possible, because builtin pointer types do not have their own cast
operators.

template <class Head, class Tail>
class FamilyPtr< Typelist<Head,Tail> > : public FamilyPtr<Tail>
{

template <class FromType>
MyType& operator = (FromType& from) {

// --- No builtin FamilyPtr<T>* -> T* conversion
// --- allowed so explicit conversion needed
head = & static_cast<Head&>(from);
Rest::operator= (from);
return *this;

}
};

template <class Head>
class FamilyPtr< Typelist<Head,NullType> >
{

MyType operator = (Head& from) {
head = &from;
return *this;

}
};

As a result, dynamic binding and all conversion facilities of Family are pro-
vided by our pointers as structures and pointers are completely interchangeable4.
No operator* is needed to dereference the pointers, so all conversions are pos-
sible between pointers and structures:

FAMILY_3(PlusDisplay, PlusCheck, PlusEval) sum;
FAMILYPTR_3(PlusDisplay, PlusCheck, PlusEval) plusPtr = sum;

FAMILY_3(OpDisplay, OpCheck, OpEval) expr;
FAMILYPTR_3(OpDisplay, OpCheck, OpEval) exprPtr = sum;

exprPtr = plusPtr; // --- pointer -> pointer conversion
exprPtr = sum; // --- object -> pointer conversion
expr = plusPtr; // --- pointer -> object conversion

4 This property is not necessarily an advantage and may need further revision.

224 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

When a FamilyPtr object is a left value, no objects are copied, only pointer
members are set to adequate addresses. This greatly improves speed compared
to Family which copies whole objects by value.

Apart from the need of the explicit cast to the required builtin pointer type,
FamilyPtr is able to substitute Family much more efficiently. Why would we
still use Family then? We do not have to, but we had better to do. It is designed
to contain several objects and handle them together, without it we would have
tons of separate objects and a chaotic resource management. We suggest creating
collaborating objects in one Family object and then making all conversions using
adequate FamilyPtr types.

6.2 Smart References

Usually references are preferred to pointers. Using them we can do the same
as with pointers without essential changes. The only difference is that pointer
members are changed to references, thus no address operator (operator&) is
needed for initialization and copy. This has a few consequences:

– No default constructor can be made (references have to be initialized imme-
diately when created).

– When using operator=, not pointers are set, but whole objects are copied,
which may cause loss of dynamic type information. This means that dynamic
binding is done only when initializing the reference. (E.g. we have a reference
of type Vehicle& initialized to a Car object. If an object of SportsCar is
copied to the referenced object using operator=, no dynamic binding is
provided).

Because its implementation is almost like that of FamilyPtr, we omit the
necessary program code5.

7 Robustness and Limitations

An important advantage of our solution is that it relies only on standard C++
template features. Similarly to STL no extension to C++ is required, so (theo-
retically) any number of collaborating classes could be used with any standard
compliant compiler. Effectively compilers do not follow the C++ standard and
have finite resources. We have tested some compilers and had the following re-
sults:

5 Source code of our whole framework can be downloaded from
http://gsd.web.elte.hu/publications/

An Extension to the Subtype Relationship in C++ 225

Compiler # of classes Cause of limitation
g++ 3.2 45 Macro parameter limit in precom-

piler
g++ 2.96 17 Recursion depth limit reached
Intel 7.1 25 Unacceptable compile time on a PIII

750MHz processor, it seems that ex-
ponential resources are consumed

VC++ .NET 0 Partial template specializations are
not implemented

Borland 6.0 0 Loki does not compile
OpenWatcom 1.0 0 Loki does not compile

Though the number of classes in a family is limited, it’s not a serious limita-
tion because at most a dozen of classes are practically enough to express most
design issues. Our solution is also completely type safe which is gained by rely-
ing on builtin compiler rules and language features. Our structures are converted
class by class, so the compiler supports all types of required conversions. On the
other hand, a compile time error will arise whenever an invalid conversion is
done.

Though our conversions are working properly, they still have a few issues in
consequence of certain C++ language rules. They are as follows:

– All required conversions are supported, but sometimes even conversions that
were not intended are also introduced. They are valid but undesirable results
of a class design error. Just imagine the class std::string in the source list
and std::istringstream in the target list. Now an error would be expected,
but std::istringstream has a constructor with a string parameter as an
initial buffer value, so the conversion is completely legal. Defining our con-
structors explicit does not help here because explicit constructor calls are
made in Family during conversion in the member initializer lists. It can be
avoided only by careful class design.

– If a type is added to a list more than once or repeated inheritance occurs
in the user object to be converted, a compilation error will arise for type
ambiguity.

– If a required method of the class is not present (e.g. there is no copy con-
structor, default constructor or the conversion to a base class is explicitly
forbidden), the code based on the non-existent feature will not compile.

They are not results of our construct, only consequences of the C++ language
standard.

8 Related Work

Several discussions were made on the applicability of C++ mixins/mixin layers
to solve similar problems (see e.g. Smaragdakis and Batory in [12]). They had

226 István Zólyomi, Zoltán Porkoláb, and Tamás Kozsik

shortages either not to cover the whole problem addressed by us or inconve-
niences at usage.

In languages with structural subtyping (see e.g. [4]) the same problem does
not arise: structural subtyping is disjunctive. Our tailor-made conversions can
be considered as a tool to make the subtype relation of C++ closer to struc-
tural subtyping. We increase the flexibility of subtypes, but “without the loss of
the semantic information that hierarchies of type names provide”. The goal of
Muckelbauer and Russo in [10] is similar, but they start from a language with
structural subtypes and propose the addition of “semantic attributes” to types.
This way they can express the same semantic dependencies as the inheritance-
based type hierarchies for the different concerns in our approach.

Advanced techniques for separation of concerns such as Multi-Dimensional
Separation of Concerns [11], Aspect-Oriented Programming [8] or Composition
Filters [2] can also aid collaboration-based design. However, these techniques are
aiming to solve problems different from the one this paper brought on. For ex-
ample, in AspectJ [5] or in AspectC++ [13] we can extend a hierarchy of classes
with orthogonal concerns (implemented as aspects), preserving the subtype re-
lationships, but this extension applies to whole classes and not to individual
objects.

9 Conclusions

C++ supports explicit subtyping based on multiple inheritance. This subtyping
mechanism is not flexible enough to express certain subtype relationships which
are necessary for implementing collaboration-based designs. Our framework ex-
tends the possibilities of the subtyping mechanism in C++: it allows families of
collaborating classes to be subtypes of other families. The framework makes the
subtype relation disjunctive with respect to multiple inheritance.

In the implementation of our framework we have used standard template
metaprogramming tools such as Loki::Typelist. If the programmer expresses
families of collaborating classes with the help of the templates defined in our
framework, (s)he can make use of coercion polymorphism using class Family or
inclusion polymorphism with class FamilyPtr.

References

1. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

2. Lodewijk Bergmans, Mehmet Aksit. Composing Crosscutting Concerns Using
Composition Filters. Communications of the ACM, Vol. 44, No. 10, pp. 51-57,
October 2001.

3. Kim B. Bruce. Foundations of Object-Oriented Languages. The MIT Press, Cam-
bridge, Massachusetts (2002)

4. Luca Cardelli. Structural Subtyping and the Notion of Power Type. Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, California, January 1988. pp 70-79.

An Extension to the Subtype Relationship in C++ 227

5. Eclipse. The aspectj project. http://www.eclipse.org/aspectj/
6. Krzysztof Czarnecki, Ulrich W. Eisenecker. Generative Programming: Methods,

Tools and Applications. Addison-Wesley (2000)
7. Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki. A Solution to the

Constructor-Problem of Mixin-Based Programming in C++. Presented at the
GCSE2000 Workshop on C++ Template Programming.

8. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, John Irwin. Aspect-Oriented Programming. Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241, June 1997.

9. Scott Meyers. Effective STL. Addison-Wesley (2001). pp. 33-35.
10. Patrick A. Muckelbauer, Vincent F. Russo. Lingua Franca: An IDL for Structural

Subtyping Distributed Object Systems. USENIX Conference on Object-Oriented
Technologies (COOTS),
http://www.usenix.org/publications/library/proceedings/coots95/

11. Harold Ossher, Peri Tarr. Multi-Dimensional Separation of Concerns and The Hy-
perspace Approach. IBM Research Report 21452, April, 1999. IBM T.J. Watson
Research Center. http://www.research.ibm.com/hyperspace/Papers/tr21452.ps

12. Yannis Smaragdakis, Don Batory. Mixin-Based Programming in C++. In proceed-
ings of Net.Object Days 2000 pp. 464-478

13. Olaf Spinczyk, Andreas Gal, Wolfgang Schröder-Preikschat. AspectC++: An
Aspect-Oriented Extension to C++. Proceedings of the 40th International Confer-
ence on Technology of Object-Oriented Languages and Systems (TOOLS Pacific
2002), Sydney, Australia, February 18-21, 2002.
http://www.aspectc.org/download/tools2002.ps.gz

14. Bjarne Stroustrup. The C++ Programming Language Special Edition. Addison-
Wesley (2000)

15. Harold Ossher, Peri Tarr. Multi-Dimensional Separation of Concerns and The Hy-
perspace Approach. IBM Research Report 21452, April, 1999. IBM T.J. Watson
Research Center.
http://www.research.ibm.com/hyperspace/Papers/tr21452.ps

	1 Introduction
	2 Applicability
	3 Class Hierarchy
	3.1 Overview of Loki::Typelist
	3.2 Recursive Inheritance

	4 Instantiating Objects
	5 Structural Conversions
	5.1 Do It in the Naive Way
	5.2 Template Constructors

	6 Dynamic Binding
	6.1 Smart Pointers
	6.2 Smart References

	7 Robustness and Limitations
	8 Related Work
	9 Conclusions
	References

