
Subtype Relationship

in C++

The „chevron shape” inheritance

2

Problem decomposition

● Build & combine reusable
components

● Most problems have several
dimensions

● We are good at single
dimension decomposition

● Conflicting decompositions

3

Design principles

● Generic programming
● Policy/strategy pattern
● Component based design

● Templates
● Inheritance, virtual functions
● CRTP (static polimorphism, F-bounded)

● Multiple inheritance, mixins
● Type-erasure, overloading

4

Why inheritance

● code reuse
● loosely coupled code
● extensible
● readability
● performance
● value semantics (eg. vector-of-pointers)

Goal

5

Inheritance vs tagged unions

variant/union

● Type set: closed

● Operation set:open

inheritance

● Type set: open

● Operation set:closed

6

Chevron-shape inheritance

Source: Free Icons Library

ios

iostream

ostreamistream

ifstream ofstream

fstream

virtual virtual

https://icon-library.net/icon/army-icon-18.html

7

Multiple inheritance

● Name collisions?
● Diamond shape?
● Runtime implications?
● Partial override of the virtual

interface
● You don't pay for what you don't use?

“Multiple inheritance is like a parachute; you
don’t need it very often, but when you do it is
essential” - (Grady Booch, 1991)

8

Quick recap: Polimorphism

class Animal {
public:
 int legs;
 virtual void speak() { puts("hi"); }
 virtual ~Animal();
};

class Cat : public Animal {
public:
 int tails;
 void speak() override {
 printf("Ouch, my %d tails!",
 tails);
 }
};

a->speak();
movq (%rdi), %rax
callq *(%rax)

9

Memory layout

Cat IS-AN Animal

10

Multiple inheritance: CatDogs

class Animal {
 virtual ~Animal();
};

class Cat : public Animal { };

class Dog : public Animal { };

class CatDog :
 public Cat, public Dog { };

11

Multiple inheritance: CatDogs

12

IS-A CatDog an Animal?

13

IS-A CatDog an Animal?
No, it's two Animals.

14

Diamond-shape inheritance

15

Vtable layout recap (Itanium ABI)

16

Access a member of a virtual base

void test(Cat *c) {
 return c->legs;
}

movq (%rdi), %rax
movq -24(%rax), %rdx
movq 8(%rdx,%rdi), %eax

17

What if fstream inherited... everything

ios

iostream

ostreamistream

ifstream ofstream

fstream

virtual virtual

virtual virtual

virtual virtual

Probably worse
performance?

I guess you could extract common file I/O
functionality into a mixin, but that would require
virtual inheritance in order to allow for the
diamond inheritance, which would add an extra
indirection when accessing the underlying
basic_filebuf.
- stackoverflow (rustyx)

18

Resources

● Zolyomi, Istvan & Porkoláb, Zoltán & Kozsik, Tamás. (2003)
An Extension to the Subtype Relationship in C++ Implemented with
Template Metaprogramming. Lecture Notes in Computer Science.
10.1007/978-3-540-39815-8_13.

● CppCon17 Arthur O'Dwyer “dynamic_cast From Scratch”

● CppCon19 John Bandela “Polymorphism != Virtual: Easy, Flexible Runtime
Polymorphism Without Inheritance”

● ACCU18 Louis Dionne Runtime Polymorphism: Back to the Basics

● GoingNative13 Sean Parent Inheritance Is The Base Class of Evil

● Bjarne Stroustrup The Design and Evolution of C++

● J. E. Shopiro An example of multiple inheritance in C++: a model of the
iostream library

● Harold Ossher and Peri Tarr Multi-Dimensional Separation of Concerns
andThe Hyperspace Approach

● stackoverflow 'Inaccessible direct base' caused by multiple inheritance

● stackoverflow Why fstream is not inherited from ifstream and ofstream in
c++?

https://www.youtube.com/watch?v=QzJL-8WbpuU
https://www.youtube.com/watch?v=PSxo85L2lC0
https://www.youtube.com/watch?v=PSxo85L2lC0
https://www.youtube.com/watch?v=H8lFldGvt9w
https://www.youtube.com/watch?v=bIhUE5uUFOA
https://stackoverflow.com/questions/4118412/inaccessible-direct-base-caused-by-multiple-inheritance
https://stackoverflow.com/questions/50817784/why-fstream-is-not-inherited-from-ifstream-and-ofstream-in-c
https://stackoverflow.com/questions/50817784/why-fstream-is-not-inherited-from-ifstream-and-ofstream-in-c

19

The Design and Evolution of C++

● Published in 1994
● Still highly relevant
● Even discusses

multimethods
● And many more…
● Must have book

* I don't get any benefit from
advertising this book.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

