
Explore Family polymorphism

Péter Kókai

Eötövs Loránd University

Keywords polymorphism, family polymorphism

1 Introduction

There are different type of polymorphism present, while there are a well known and
commonly used type of polymorphism such as parametric, subtype or ad-hoc polymor-
phism, the research did not stop there. The aim of this paper is not to create a yet
another polymorphism rather do a deep dive on the family polymorphism. This type
of polymorphism was first mentioned by Erik Ernest expanding the BETA language
into gBETA. The concept was later adapted by Scala as well.

The examples mostly going to be using Scala programming language. This paper
assumes the reader are familiar with Scala at basic level, and a few concepts will
be explained only when required. For detailed overview of Scala check the following
works[12][9].

The next section is going to be an introduction to the currently dominating type of
polymorphism, and basic building blocks that are used to create a family polymorphism
including virtual classes, self-types.

The 3rd section is finally introduces the main topic of this paper family polymor-
phism itself via problems that were partially already introduced in the first section.
Providing a possibly sound solution.

After that exploring the lightweight family polymorphism compared to family poly-
morphism.

In the end one must speak and reason about the type system used by languages
supporting family polymorphism such as gBETA or Scala.

2 Polymorphism

Among popular and relatively old languages such as Java, C++ or C# it is possible
to see a polymorphism is a key feature. The most common object-oriented languages
provide subtyping, that is a well known type of polymorphism sometimes also referred
as inclusion polymorphism. As its name suggest - inclusion - has other benefits of
this mechanism is to share code, specifically avoid code duplication. Of course code
duplication sometimes acceptable, still it is in the coders best interest to avoid it.
Despite the subtyping popularity, that is only a type of polymorphism. Finding different
types in the same language also not uncommon. Just as provided example for subtype
polymorphism both Java and C++ has a means to provide a different way to achieve
multiple forms. Just think of template metaprogramming or generic introduced in Java.
Those provides a means to write generic function, code via a parametric polymorphism.

2.1 Ad-hoc polymorphism

It is possibly to provide a function or method with one name, but in reality refer to
multiple implementation depending on the different type or number of arguments. This
is also referred to in languages as function overloading or method overloading. Such an
example is:

#include <cmath>

bool even(const int n) {
return 0 == n % 2;

}

bool even(const double n) {
return 0 == std::mod(n,2);

}

In this case the even has two different implementation for different types, the
dispatch is made in compile time therefore only the static types are checked. By using
the same name has its own risk of producing unreadable code, but exploring readability
issues is not a scope now.

2.2 Parametric polymorphism

In contrast with ad-hoc where the type could have completely different, the parametric
polymorphism aim is to create one implementation that works with different types
while still keep the type safety, as in the following example shows the static type is
used to determine if the dispatching is possible.

#include <cmath>

template<typename Number>
bool even(Number n) {

return 0 == std::fmod(n, 2);
};

In this example only one even function can be seen, while the trick here is to use
std::fmod that itself has an ad-hoc definition in C++. It is possible to provide an
implementation without std::fmod, this was kept for because of its length.

The Number itself cannot be any type, as there is still a restriction as it requires
the std::fmod to be implemented for that type. Those type of restriction could also be
specified in c++ via concepts[2]. The parametric polymorphism also known as in many
languages as Generic programming, that approach was taken in Java or Scala.

2.3 Subtype polymorphism

The subtype describes a relation between two types, in fact if a S type is a subtype
of T (in short S<:T), that means that using S instead of T should be transparent and
safe to do[7]. This is usually referred as only polymorphism in OO languages, and used
with combination of inheritance providing flexible design and help code reuse.

Following the example before with implementing an even function for numbers.

class Number { };

class Integer : public Number { };
class Double : public Number { };

bool even(Number n) {
return Number(0) == n.fmod(2);

}

Without providing the implementation details let’s assume it is so Integer<:Number
and Double<:Number are both true. The implementation of even works for all S type
that is subtype of the Number, and inherited from either Number or a type inherited
from Number and still a subtype of Number. It is easy to confuse the inheritance with
subtype in this example.

3 Additional techniques

3.1 Virtual classes

The usage of virtual functions and method in object oriented languages are common,
and well understood.

In language like C++, the abstract class can be defined via creating a virtual
function not providing implementation for those functions, thus forming a kind of
interface for subclasses. Just like in the example with Number the fmod function must
be either using virtual function or be one itself. Because the even function has no
knowledge about the exact type or name of that type that the field going to have in
either its Integer or Double.

While from Number point of view it would be possible not to even hold any value
in its subclasses. But the signature of the fmod clearly states otherwise. The reader of
such class not holding value could be surprised, as it would most likely seem unnatural.

Of course solving such issue is possible with the combination of parametric poly-
morphism:

template<typename Storage>
class Number {

Storage value;
};

class Integer : public Number<int> {};
class Double : public Number<double> {};

Even with extending the Number with the value without knowing all of its sub-
classes that finally specifies the Storage it is impossible to do a full analysis on that
class. The possibilities with the current sets of C++ stops at this point.

Despite that C++ failed us in this example, by checking out the current sets of
features. Specifically the virtual method calls. The dynamic dispatching of the oper-
ation defined for objects only deals with the functions and methods, while the object
itself contains also fields holding values, and defining their own set of operations. Those
operation could in fact define their own set of operation, but the type of the fields are

still limited to from the first parent in the inheritance chain. There is no way with
using standard inheritance to further refine the type of the fields of the objects. In
order to solve template related issues one should check out concepts[2]. But that is not
the topic that interested here.

The simple idea is to extend objects with field that could hold a class as a value.
The key difference between this and nested classes that nested classes are classes that
tied to the inner class and those are not possible to modify dynamically, no late binding
is possible. By allowing the class to be tied to the object itself makes it possible to defer
type information into run-time. Additionally the objects are safe to store not only the
class but also a subclass. This dynamic dispatching can be called as virtual classes.

4 Family polymorphism

The family polymorphism described here aims to scale the current polymorphism into
the multi object, method level. Where multiple object and methods can be combined
in a type safe manner.

It is easy to mix up families just like the example with three person describes from
the introduction of family polymorphism[3]:

The receptionist decides to get things going by asking a man "Are you a hus-
band?" and asking a woman "Are you a wife?". Upon receiving two affirmative
- though slightly baffled - answers, those two people are assigned to the same
room, together with a little girl who said "Erm, yeah, and I’m a daughter!"

Even if those people has those roles in a family, it does not necessarily means that
they are part of the same one. Thus assigning them for the same room might not be
the best idea. With the above idea let first just focus on the husband and wife as it is
going to be an issue in case of two object, by allowing an additional third object only
complicates the example and does not provide any solution. Just lets craft a husband,
a wife and a room in Scala as follows:

class Husband { };

class Wife { };

class Room {
var husband: Husband = null;
var wife: Wife = null;

def assign_husband(h: Husband) : Room = {
husband = h;
this;

}
def assign_wife(w: Wife) : Room = {

wife = w;
this;

}
};

val husband = new Husband();

val wife = new Wife();

val room42 = new Room();

room42.assign_husband(husband);
room42.assign_wife(wife);

There is nothing uncommon in that example, it does not even introduces the possibility
of other husbands and wives. Still the wife and the husband can be considered to be
part of the same family. Everything works as expected the family is in the room42 and
happy.

Mixing up things with only one room and one family is really hard. By introducing
multiple rooms the situation still controllable as being in a different room might not
be ideal but okay.

The issue raises when a second family arrives, and now it is a father and a mother.
This other family also consists of Husband and Wife, but they are clearly part of a
different family as they have a child while the other family before them did not.

class Father extends Husband {
def has_child(): Boolean = true;

};

class Mother extends Wife {
def has_child(): Boolean = true;

};

val husband = new Husband();
val wife = new Wife();

val room42 = new Room();
val room43 = new Room();

room42.assign_husband(husband);
room42.assign_wife(wife);

val alsohusband = new Father();
val alsowife = new Mother();

assert(alsohusband.has_child);
// This would not compile as the husbend
// is just Husband end not a Father
//assert(husband.has_child);

room42.assign_husband(alsohusband);
room42.assign_wife(wife);

room43.assign_husband(husband);
room43.assign_wife(alsowife);

Just like anybody would expected from inheritance it is perfectly fine to assign
the father and the wife into the same room, while that is clear that they are from a
different family.

It was shown in the original paper that it is possible to solve this kind of issues
with the existing polymorphism, but there is no solution that both kept type safety
and reusability. Of course such a relationship between the families can be severed with
not inheriting from the same base class, rendering the wife and the husband and the
mother and the father irrelevant classes. Any object-oriented type system would detect
those classes unrelated. Such a solution would solve the type safety, but would not
allow reusability. The trial of such resolution could be checked in Ernst’s paper[3].

The need to connect those objects that are part of the same family is needed. Both
Java and C++ supports nested classes, in those languages the nested class itself does
not solve the issue. The types of those classes would be the same just wrapped with
an other class.

The Scala example with nested classes:

class AbstractFamily {
class AbstractHusband { };
class AbstractWife { };

};

class Family extends AbstractFamily{
class YoungHusband extends AbstractHusband { };
class YoungWife extends AbstractWife { };

};

class FamilyWithKids extends AbstractFamily {
class Father extends AbstractHusband {

def has_child(): Boolean = true;
};
class Mother extends AbstractWife {

def has_child(): Boolean = true;
};

};

class Room {
type AH = AbstractFamily#AbstractHusband;
type AW = AbstractFamily#AbstractHusband;

def assign_husband(h:): Room = this;
def assign_wife(w: AW): Room = this;

};

val family = new Family();
val marriedfamily = new FamilyWithKids();
val room42 = new Room;

val husband = new family.YoungHusband();
val alsowife = new marriedfamily.Mother();

room42.assign_husband(husband);
room42.assign_wife(alsowife);

This still works as effectively nothing change, only the classes get embedded into
a class. But Father <: AbstractHusband still true. The solution would require that
both FamilyWithKids <: AbstractFamily, Father <: AbstractHusband and Mother <:
AbstractWife are true, and the same with Family <: AbstractFamily, YoungHusband
<: AbstractHusband and YoungWife <: AbstractWife while mixing the YoungHusband
and Mother or Father and YoungWife would not be possible.

In Scala it is possible to include a type as a field of an object, those fields works
effectively just like any other type name. Except they are bound to the object itself,
and even two object with the same class having the same type as field when accessed
via the objects are observed as different types, as the type system is path dependent.
Therefore the objects are also part of the type name, causing different objects having
different types.

4.1 Virtual type in scala

This field in scala is defined via the type keyword. The type definition could be deferred
for later classes simple not specifying the exact type, just like in this example shown:

abstract class AbsCell {
type T;
val init: T;

private var value: T = init;
def get: T = value;
def set(x: T): Unit = { value = x }

}

object cel extends AbsCell {
type T = Integer
val init = 14

}

cel.set(cel.init)
println(cel.get);

That abstract type later on in the inheritance chain could further refined and at some
point of the chain the value (at least before instantiate) must be fixed. The further
refinement is possible as non-, co-, and contra-variant:

C { type t = T } // if t is declared non-variant,
C { type t <: T } // if t is declared co-variant,
C { type t >: T } // if t is declared contra-variant.

4.2 Family polymorphism in scala

The AbstractFamily could be improved by providing not only AbstractHusband and
AbstractWife but an abstract type for those pairs that are co-variant with their Ab-
stract pair.

Check out only the differences in the class definition. The unchanged lines are
emitted from the next example.

class AbstractFamily {
type Husband <: AbstractHusband
type Wife <: AbstractWife
...

};

class Family extends AbstractFamily{
type Husband = YoungHusband
type Wife = YoungWife
...

};

class FamilyWithKids extends AbstractFamily {
type Husband = Father
type Wife = Mother
...

};

abstract class Room {
type F <: AbstractFamily

def assign_husband(h: F#Husband): Room = this;
def assign_wife(w: F#Wife): Room = this;

};

With the following change changing the Room so it could hold A family instead of
members of a family. Please note that while the previous Room implementation would
still work the goal here is to only work within the same family. The path dependent
types in the Room now fixed once a family is fixed, and it is not possible to instantiate
a non-fixed family.

val family = new Family();
val husband = new family.Husband();
val wife = new family.Wife();

val room42 = new Room{type F = Family;};
val room43 = new Room{type F = FamilyWithKids;};

room42.assign_husband(husband);
room42.assign_wife(wife);

val marriedfamily = new FamilyWithKids();
val alsohusband = new marriedfamily.Husband();
val alsowife = new marriedfamily.Wife();

room43.assign_husband(alsohusband);
room43.assign_wife(alsowife);

//Mixing families do not work
//Does not compile
room42.assign_husband(alsohusband);
room42.assign_wife(alsowife);

The solution presented here has some limitation compared to the original family
polymorphism, that difference has impact on both the type system required and lan-
guage features needed to implement. Before exploring that difference, let me share an
other example, which does not suffer of such limitations.

4.3 Original Graph example in gBETA

The introduction of family polymorphism was originally in gBETA[4] language. The
gBETA is an improved version of the BETA language. In the BETA language, classes
and methods has been merged into a term patterns. The virtual method became virtual
pattern, and with that virtual classes became possible. Compared to Scala, Java or even
C++ the virtual methods in BETA/gBETA are not overridden by subclasses rather
refined by the subclass implementation. The INNER keyword is used to refer to parent
implementation.

(# Graph:
(# Node:<

(# touches:<
(# e: ^ Edge; b: @boolean
enter e[]
do (this(Node)=e.n1) or

(this(Node)=e.n2) -> b
exit b
#);
exit this(Node)[]
#);
Edge:<(# n1,n2: ^ Node exit this(Edge)[] #)

#);
OnOffGraph: Graph
(# Node::< (# touches::<

!(# do
(if e.enabled then INNER if)

#)
#);

Edge::< (# enabled: @boolean #)
#);
build:
(# g:< @Graph; n: ^ g.Node;

e: ^ g.Edge; b: @boolean
enter (n[],e[],b)
do n->e.n1[]->e.n2[];
(if (e->n.touches)=b then ’OK’->putline if)

#);
g1: @Graph; g2: @OnOffGraph

do
(g1.Node,g1.Edge,true)->build(#g::@g1#);
(g2.Node,g2.Edge,false)->build(#g::@g2#);
(* compile error *)
(*(g2.Node,g1.Edge,false)->build(#g::@g1#);*)
(*(g2.Node,g1.Edge,false)->build(#g::@g2#);*)

#)

For the eyes that are unfamiliar with the gBETA/BETA syntax the following code
describes Graph and OnOffGraph families. They both uses edge representation, and
the OnOffGraph - as its name suggest - could switch its edges. Additionally implements
a touches method displaying OK on the console if two Node has an edge connecting
them.

The same could be written in Scala also. While in Scala it is not that compact as
in gBETA, it maybe easier for the reader to understand what happens.

abstract class Graph {
type Node <: AbstractNode
type Edge <: AbstractEdge

def mkNode() : Node
def connect(n1: Node, n2: Node) : Edge

abstract class AbstractEdge(val n1: Node,
val n2: Node)

trait AbstractNode {
def touches(edge: Edge): Boolean = {

edge.n1 == this || edge.n2 == this
}

}
}

class BasicGraph extends Graph {
type Node = BasicNode
type Edge = BasicEdge
protected class BasicNode extends AbstractNode
protected class BasicEdge(n1:Node,

n2:Node)
extends AbstractEdge(n1, n2)

def mkNode() = new BasicNode
def connect(n1: Node, n2: Node) : BasicEdge = {

new BasicEdge(n1, n2)
}

}

class OnOffGraph extends Graph {
type Node = OnOffNode

type Edge = OnOffEdge
protected class OnOffNode extends AbstractNode {

override def touches(edge: Edge): Boolean = {
edge.enabled && super.touches(edge)

}
}
protected class OnOffEdge(n1:Node, n2:Node,

var enabled: Boolean)
extends AbstractEdge(n1, n2)

def mkNode() = new OnOffNode
def connect(n1: Node, n2: Node) : OnOffEdge = {

new OnOffEdge(n1, n2, true)
}

}

val g = new BasicGraph
val n1 = g.mkNode()
val n2 = g.mkNode()
val e = g.connect(n1, n2)
assert(n1 touches e)
assert(n2 touches e)
val g2 = new BasicGraph
//g2.connect(n1, n2) // Does not compile

val og = new OnOffGraph
val on1 = og.mkNode()
val on2 = og.mkNode()
val oe = og.connect(on1, on2)
//ERROR: og.connect not applicable to g.Node
//val mixed = og.connect(n1, n2)

assert(on1 touches oe)
assert(on2 touches oe)
//ERROR: on2.touches not applicable to g.Edge
// println(on2 touches e)
oe.enabled = false;
assert (! (on2 touches oe))
assert (! (on1 touches oe))

The graph Scala implementation was published in the following blog post[6]. That post
also describes family polymorphism in details limited to Scala.

Other examples that could illustrate the need for the family polymorphism are only
mentioned here. These examples includes the Subscriber/Publisher described in the
Scala overview[12] and the extendable compiler[10]. The Subscribed/Publisher example
is pattern used in many graphical applications.

5 Lightweight family polymorphism

The solution presented in gBETA yields a complex type system. There are vObj or
vc describe later. Those type system could help proving the soundness of the original
family polymorphism. The class of families could be achieved in a more relax way,
while the type safety and the reusability is kept as desired. This is usually refereed as
lightweight family polymorphism, it does not require for the objects to hold their own
distinct type class rather allows classes to purely form families. Still nested classes are
not enough to solve lightweight version. Just like the original family polymorphism it
is possible to use it in Scala, in fact it is really easy to mix up them in Scala.

An experienced Scala programmer could point out the example with families has
such restriction because of how the Room is crafted. It only referred to the family with
the path class#type_field, instead of using the object as type prefix.

Relative path types

class Graph {
static class Node {};
static class Edge { .Node n1, n2; };

};

It is possible to reference to the Node as Graph.Node anywhere and that specify
the exact type. Inside the family of Graph, it is also possible to refer the class of a
family with a relative path type emitting the Graph and simply using .Node while the
Graph.Node is called fully qualified path type.

Inheritance without subtyping.

class OnOffGraph extends Graph {
static class Node { };
static class Edge { };

};

This means that OnOffGraph.Node inherits all of the Graph.Node’s properties still
the OnOffGraph.Node is not a subclass of the Graph.Node.

6 Type system soundness

6.1 vOjb

The concepts and type system of advanced languages like BETA, gBETA or Scala are
far advanced a simple type calculus. There was a need to create a possible ways to
reason about the soundness[13] of those patterns. There were several works that aim
to provide such theory introducing embedded types within objects, classes describing
nested structures, and using pattern as a general term for class, method, function.

The vObj[11] were created to deal with dependent types. The vObj follows the
BETA by defining the Class M̄ethod F̄unctor, the same ideology of pattern instead of
differentiating those.

6.2 vc: virtual class calculus

The OO has concepts for virtual methods or functions, that has the ability to defer the
decision which method should be called in run-time, as the method itself is dependent
on the object and not the static type of the object(class). This provides a flexibility for
the code owner to handle the object and not the class. The objects are not only sets
of methods and functions, they also includes attributes. These attributes in most cases
are statically typed and fixed at compile time. This restriction can be lifted in order
to provide the same citizenship as for the methods, and it is called virtual classes. The
virtual classes were implemented as virtual patterns in the BETA[8] language as well
as in Ceaser[1]. While BETA provides an implementation for the virtual classes, it was
never proven that the type system is sound. There was a need to reason about virtual
classes in order to prove its type system is complete, so a virtual class calculus[5] were
created to deal with virtual classes. The paper both introduced static and dynamics of
vc but also proved its soundness.

References

[1] Ivica Aracic et al. “An overview of CaesarJ”. In: Transactions on Aspect-
Oriented Software Development I. Springer, 2006, pp. 135–173.

[2] Gabriel Dos Reis and Bjarne Stroustrup. “Specifying C++ concepts”. In:
ACM SIGPLAN Notices. Vol. 41. 1. ACM. 2006, pp. 295–308.

[3] Erik Ernst. “Family polymorphism”. In: European Conference on Object-
Oriented Programming. Springer. 2001, pp. 303–326.

[4] Erik Ernst. “gbeta-a language with virtual attributes, Block Structure, and
Propagating, Dynamic Inheritance”. In: DAIMI Report Series 549 (2000).

[5] Erik Ernst, Klaus Ostermann, and William R Cook. A virtual class calcu-
lus. Vol. 41. 1. ACM, 2006.

[6] Martin Kneißl. Family Polymorphism in Scala. Avaiable from web.archive.org.
2015. url: http://www.familie-kneissl.org/Members/martin/blog/
family-polymorphism-in-scala.

[7] Barbara Liskov. “Data abstraction and hierarchy”. In: SIGPLAN notices
23.5 (1988), pp. 17–34.

[8] Ole Lehrmann Madsen and Birger Moller-Pedersen. Virtual classes: a pow-
erful mechanism in object-oriented programming. Vol. 24. 10. ACM, 1989.

[9] Nathaniel Nystrom, Stephen Chong, and Andrew C Myers. “Scalable ex-
tensibility via nested inheritance”. In: ACM SIGPLAN Notices. Vol. 39.
10. ACM. 2004, pp. 99–115.

[10] Martin Odersky and Matthias Zenger. “Scalable component abstractions”.
In: ACM Sigplan Notices. Vol. 40. 10. ACM. 2005, pp. 41–57.

[11] Martin Odersky et al. “A nominal theory of objects with dependent types”.
In: European Conference on Object-Oriented Programming. Springer. 2003,
pp. 201–224.

[12] Martin Odersky et al. An overview of the Scala programming language.
Tech. rep. 2004.

[13] Andrew K Wright and Matthias Felleisen. “A syntactic approach to type
soundness”. In: Information and computation 115.1 (1994), pp. 38–94.

