
Family polymorphism

December 7, 2019

Family

The receptionist decides to get things going by asking a
man ”Are you a husband?” and asking a woman ”Are
you a wife?”. Upon receiving two affirmative - though
slightly baffled - answers, those two people are assigned to
the same room, together with a little girl who said ”Erm,
yeah, and I’m a daughter!”

Goal

I Group of classes forming a family

I Unbounded amount of those families

I Type safety: Ability not to mix up families

I Flexibility of using any of those family

Examples

I Graph

I Subscriber/Observer

I Family room assignment

Family room assignment

class Husband { };

class Wife { };

class Room {

def assign_husband(h: Husband) : Room = this;

def assign_wife(w: Wife) : Room = this;

};

val husband = new Husband();

val wife = new Wife();

val room42 = new Room();

room42.assign_husband(husband);

room42.assign_wife(wife);

class Father extends Husband { };

class Mother extends Wife { };

val husband = new Husband();

val wife = new Wife();

val alsohusband = new Father();

val alsowife = new Mother();

val room42 = new Room();

room42.assign_husband(husband);

room42.assign_wife(wife);

room42.assign_husband(alsohusband);

room42.assign_wife(wife);

room42.assign_husband(husband);

room42.assign_wife(alsowife);

template<typename W, typename H>

struct AbstractWife { int num_child() { return 0; } };

template<typename W, typename H>

struct AbstractHusband { };

struct Wife;

struct Husband : public AbstractHusband<Husband, Wife> {};

struct Wife : public AbstractWife<Husband, Wife> { };

struct Mother;

struct Father : public AbstractHusband<Father, Mother> { };

struct Mother : public AbstractWife<Father, Mother> {

int number_of_child;

int num_child() { return number_of_child; }

};

template <typename H, typename W> struct Room {

W *wife;

void assign(H *h, W *m) { wife = m; }

int room_size() { return wife->num_child()+2; };

};

int main() {

auto *room42 = new Room<Husband, Wife>();

auto *room43 = new Room<Father, Mother>();

room42->assign(new Husband(), new Wife());

//room42->assign(new Husband(), new Mother());

room42->room_size();

room43->assign(new Father(), new Mother());

//room43->assign(new Husband(), new Mother());

room43->room_size();

};

Type variance

C { type t = T } // if t is declared non-variant,

C { type t <: T } // if t is declared co-variant,

C { type t >: T } // if t is declared contra-variant.

Parameter variance

class C[T] { } // if t is declared non-variant,

class C[+T] { } // if t is declared co-variant,

class C[-T] { } // if t is declared contra-variant.

class AbstractFamily {

type Husband <: AbstractHusband

type Wife <: AbstractWife

abstract class AbstractHusband { };

abstract class AbstractWife { };

};

class Family extends AbstractFamily{

type Husband = YoungHusband

type Wife = YoungWife

class YoungHusband extends AbstractHusband { };

class YoungWife extends AbstractWife { };

};

class FamilyWithKids extends AbstractFamily {

type Husband = Father

type Wife = Mother

class Father extends AbstractHusband {

def has_child: Boolean = true;

}

class Mother extends AbstractWife {

def has_child: Boolean = true;

}

};

abstract class Room {

type F <: AbstractFamily

def assign_husband(h: F#Husband): Room = this;

def assign_wife(w: F#Wife): Room = this;

};

val family = new Family();

val husband = new family.Husband();

val wife = new family.Wife();

val room42 = new Room { type F = Family; };

val room43 = new Room { type F = FamilyWithKids; };

room42.assign_husband(husband);

room42.assign_wife(wife);

room42.assign_husband(husband2);

val marriedfamily = new FamilyWithKids();

val alsohusband = new marriedfamily.Husband();

val alsowife = new marriedfamily.Wife();

assert(alsohusband.has_child);

// This would not compile as the husbend

// is just Husband end not a Father

//assert(husband.has_child);

room43.assign_husband(alsohusband);

room43.assign_wife(alsowife);

//Does not compile

room43.assign_wife(wife);

room42.assign_husband(alsohusband);

room42.assign_wife(wife);

room42.assign_husband(husband);

room42.assign_wife(alsowife);

Graph

I Scala

I gBETA

abstract class Graph {

type Node <: AbstractNode

type Edge <: AbstractEdge

def mkNode() : Node

def connect(n1: Node, n2: Node) : Edge

abstract class AbstractEdge(val n1: Node, val n2: Node)

trait AbstractNode {

def touches(edge: Edge): Boolean = {

edge.n1 == this || edge.n2 == this

}

}

}

class BasicGraph extends Graph {

type Node = BasicNode

type Edge = BasicEdge

protected class BasicNode extends AbstractNode

protected class BasicEdge(n1:Node, n2:Node)

extends AbstractEdge(n1, n2)

def mkNode() = new BasicNode

def connect(n1: Node, n2: Node) : BasicEdge = {

new BasicEdge(n1, n2)

}

}

class OnOffGraph extends Graph {

type Node = OnOffNode

type Edge = OnOffEdge

protected class OnOffNode extends AbstractNode {

override def touches(edge: Edge): Boolean = {

edge.enabled && super.touches(edge)

}

}

protected class OnOffEdge(n1:Node, n2:Node,

var enabled: Boolean)

extends AbstractEdge(n1, n2)

def mkNode() = new OnOffNode

def connect(n1: Node, n2: Node) : OnOffEdge = {

new OnOffEdge(n1, n2, true)

}

}

val g = new BasicGraph

val n1 = g.mkNode()

val n2 = g.mkNode()

val e = g.connect(n1, n2)

assert(n1 touches e)

assert(n2 touches e)

val g2 = new BasicGraph

//g2.connect(n1, n2) // Does not compile

val og = new OnOffGraph

val on1 = og.mkNode()

val on2 = og.mkNode()

val oe = og.connect(on1, on2)

// val mixed = og.connect(n1, n2) // ERROR: og.connect not applicable to g.Node

assert(on1 touches oe)

assert(on2 touches oe)

// println(on2 touches e) // ERROR: on2.touches not applicable to g.Edge

oe.enabled = false;

assert (! (on2 touches oe), "After disabling, edge virtually has gone")

assert (! (on1 touches oe), "After disabling, edge virtually has gone")

def addSome(graph: Graph): Graph#Edge = {

val n1, n2 = graph.mkNode()

graph.connect(n1, n2)

}

val g = new BasicGraph

val og = new OnOffGraph

val e2 = addSome(g)

val oe2 = addSome(og)

// oe2.enabled = false // type OnOffGraph not retained, graph.Edge not possible

def addSome2[G <: Graph](graph: G): graph.Edge = {

val n1, n2 = graph.mkNode()

graph.connect(n1, n2)

}

val g = new BasicGraph

val og = new OnOffGraph

val e22 = addSome2(g)

val oe22 = addSome2(og)

oe22.enabled = false // now OK.

(# Graph:

(# Node:<

(# touches:<

(# e: ^ Edge; b: @boolean

enter e[]

do (this(Node)=e.n1) or (this(Node)=e.n2)->b

exit b

#);

exit this(Node)[]

#);

Edge:< (# n1,n2: ^ Node exit this(Edge)[] #)

#);

OnOffGraph: Graph

(# Node::< (# touches::<!(# do (if e.enabled then INNER

if)#)#);

Edge::< (# enabled: @boolean #)

#);

build:

(# g:< @Graph; n: ^ g.Node; e: ^ g.Edge; b: @boolean

enter (n[],e[],b)

do n->e.n1[]->e.n2[];

(if (e->n.touches)=b then ’OK’->putline if)

#);

g1: @Graph; g2: @OnOffGraph

do

(g1.Node, g1.Edge, true) -> build(# g::@g1 #);

(g2.Node, g2.Edge, false) -> build(# g::@g2 #);

(* type error *)

(* (g2.Node, g1.Edge, false) -> build(# g::@g1 #); *)

(* (g2.Node, g1.Edge, false) -> build(# g::@g2 #); *)

#)

	Family polymorphism

